191 research outputs found
Cadherin-26 (CDH26) regulates airway epithelial cell cytoskeletal structure and polarity.
Polarization of the airway epithelial cells (AECs) in the airway lumen is critical to the proper function of the mucociliary escalator and maintenance of lung health, but the cellular requirements for polarization of AECs are poorly understood. Using human AECs and cell lines, we demonstrate that cadherin-26 (CDH26) is abundantly expressed in differentiated AECs, localizes to the cell apices near ciliary membranes, and has functional cadherin domains with homotypic binding. We find a unique and non-redundant role for CDH26, previously uncharacterized in AECs, in regulation of cell-cell contact and cell integrity through maintaining cytoskeletal structures. Overexpression of CDH26 in cells with a fibroblastoid phenotype increases contact inhibition and promotes monolayer formation and cortical actin structures. CDH26 expression is also important for localization of planar cell polarity proteins. Knockdown of CDH26 in AECs results in loss of cortical actin and disruption of CRB3 and other proteins associated with apical polarity. Together, our findings uncover previously unrecognized functions for CDH26 in the maintenance of actin cytoskeleton and apicobasal polarity of AECs
Quasi-Periodic Pulsations in Solar Flares: new clues from the Fermi Gamma-Ray Burst Monitor
In the last four decades it has been observed that solar flares show
quasi-periodic pulsations (QPPs) from the lowest, i.e. radio, to the highest,
i.e. gamma-ray, part of the electromagnetic spectrum. To this day, it is still
unclear which mechanism creates such QPPs. In this paper, we analyze four
bright solar flares which show compelling signatures of quasi-periodic behavior
and were observed with the Gamma-Ray Burst Monitor (\gbm) onboard the Fermi
satellite. Because GBM covers over 3 decades in energy (8 keV to 40 MeV) it can
be a key instrument to understand the physical processes which drive solar
flares. We tested for periodicity in the time series of the solar flares
observed by GBM by applying a classical periodogram analysis. However, contrary
to previous authors, we did not detrend the raw light curve before creating the
power spectral density spectrum (PSD). To assess the significance of the
frequencies we made use of a method which is commonly applied for X-ray
binaries and Seyfert galaxies. This technique takes into account the underlying
continuum of the PSD which for all of these sources has a P(f) ~ f^{-\alpha}
dependence and is typically labeled red-noise. We checked the reliability of
this technique by applying it to a solar flare which was observed by the Reuven
Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) which contains, besides
any potential periodicity from the Sun, a 4 s rotational period due to the
rotation of the spacecraft around its axis. While we do not find an intrinsic
solar quasi-periodic pulsation we do reproduce the instrumental periodicity.
Moreover, with the method adopted here, we do not detect significant QPPs in
the four bright solar flares observed by GBM. We stress that for the purpose of
such kind of analyses it is of uttermost importance to appropriately account
for the red-noise component in the PSD of these astrophysical sources.Comment: accepted by A&
Thermal Decomposition Pathways of ZnxFe3- xO4Nanoparticles in Different Atmospheres
This article shows how initial composition and thermal treatment of nonstoichiometric zinc ferrite nanoparticles (nZFN) can be chosen to adjust the structure and cation distribution and enhance magnetism in the resulting nanoscale material. It also provides insight into new prospects regarding the production and design of nanoscale materials. Investigations were conducted before and after heating of nZFN in an inert atmosphere and a vacuum up to temperature of 1170 °C. Annealing leads to partial reduction of Fe ions, enhanced magnetism, and an increase in the size of the particles independent of the atmosphere. Use of the inert atmosphere delivers a solid solution of magnetite and zinc ferrite with a reduced Zn content in the structure as a result of sublimation of newly formed ZnO and reduction of Fe, and it favors crystallization. A preference for normal-spinel phase and enhancement of magnetic saturation from 20 Am2/kg up to 101 Am2/kg was observed. Vacuum annealing with high probability produces ZnO, Fe3O4, and Fe2O3 multiphase system with signs of amorphization, mainly on the surface. A large fraction of Fe ions is reduced and the volume ratio of Fe3O4 to Fe2O3 increases with heating time. The final solid product from a complete decomposition of ZFN is magnetite
Toward the renal vesicle: Ultrastructural investigation of the cap mesenchyme splitting process in the developing kidney
Background: A complex sequence of morphogenetic events leads to the development of the adult mouse kidney. In the present study, we investigated the morphological events that characterize the early stages of the mesenchymal-to-epithelial transition of cap mesenchymal cells, analyzing in depth the relationship between cap mesenchymal induction and ureteric bud (UB) branching. Design and methods: Normal kidneys of newborn non-obese diabetic (NOD) mice were excised and prepared for light and electron microscopic examination. Results: Nephrogenesis was evident in the outer portion of the renal cortex of all examined samples. This process was mainly due to the interaction of two primordial derivatives, the ureteric bud and the metanephric mesenchyme. Early renal developmental stages were initially characterized by the formation of a continuous layer of condensed mesenchymal cells around the tips of the ureteric buds. These caps of mesenchymal cells affected the epithelial cells of the underlying ureteric bud, possibly inducing their growth and branching. Conclusions: The present study provides morphological evidence of the reciprocal induction between the ureteric bud and the metanephric mesenchyme showing that the ureteric buds convert mesenchyme to epithelium that in turn stimulates the growth and the branching of the ureteric bud
Hydroxypyridinones with enhanced iron chelating properties. Synthesis, characterization and in vivo tests of 5-hydroxy-2-(hydroxymethyl)pyridine-4(1H)-one
The synthesis of 5-hydroxy-2-(hydroxymethyl)pyridin-4(1H)-one (P1) is presented, together with the evaluation of its coordination ability towards Fe3+, studied by a combination of chemical, computational, and animal approaches. The use of complementary analytical techniques has allowed us to give evidence of the tautomeric changes of P1 as a function of pH, and to determine their influence on the coordinating ability of P1 towards Fe3+. The pFe3+ value 22.0 of P1–iron complexes is noticeably higher than that of deferiprone (20.6), one of the three clinical chelating agents in therapeutic use for iron overload diseases. This is due on one side to the tautomeric change to the catechol form, and on the other to the lower protonation constant of the OH group. Bio-distribution studies on mice allowed us to confirm in vivo the efficacy of P1. Furthermore the coordinating ability toward Al3+, Cu2+ and Zn2+ has been studied to evalu- ate the possible use of P1 against a second toxic metal ion (Al3+), and to envisage its potential influence on the homeostatic equilibria of essential metal ions. The chelating ability of P1 toward these ions, not higher than that of the corresponding deferiprone, contributes to render P1 a more selective iron chelato
Spectral optical monitoring of 3C390.3 in 1995-2007: I. Light curves and flux variation of the continuum and broad lines
Here we present the results of the long-term (1995-2007) spectral monitoring
of the broad line radio galaxy \object{3C~390.3}, a well known AGN with the
double peaked broad emission lines, usually assumed to be emitted from an
accretion disk. To explore dimensions and structure of the BLR, we analyze the
light curves of the broad H and H line fluxes and the continuum
flux. In order to find changes in the BLR, we analyze the H and
H line profiles, as well as the change in the line profiles during the
monitoring period. First we try to find a periodicity in the continuum and
H light curves, finding that there is a good chance for quasi-periodical
oscillations. Using the line shapes and their characteristics (as e.g. peaks
separation and their intensity ratio, or FWHM) of broad H and H
lines, we discuss the structure of the BLR. Also, we cross-correlate the
continuum flux with H and H lines to find dimensions of the BLR.
We found that during the monitoring period the broad emission component of the
H and H lines, and the continuum flux varied by a factor of
4-5. Also, we detected different structure in the line profiles of
H and H. It seems that an additional central component is
present and superposed to the disk emission. In the period of high activity
(after 2002), H became broader than H and red wing of H
was higher than the one of H. We found time lags of 95 days
between the continuum and H flux, and about 120 days between the
continuum and H flux. Variation in the line profiles, as well as
correlation between the line and continuum flux during the monitoring period is
in the favor of the disk origin of the broad lines with the possible
contribution of some additional region and/or some kind of perturbation in the
disk.Comment: 32 pages, accepted to A&A, typos correcte
Quasiperiodic oscillations in a strong gravitational field around neutron stars testing braneworld models
The strong gravitational field of neutron stars in the brany universe could
be described by spherically symmetric solutions with a metric in the exterior
to the brany stars being of the Reissner-Nordstrom type containing a brany
tidal charge representing the tidal effect of the bulk spacetime onto the star
structure. We investigate the role of the tidal charge in orbital models of
high-frequency quasiperiodic oscillations (QPOs) observed in neutron star
binary systems. We focus on the relativistic precession model. We give the
radial profiles of frequencies of the Keplerian (vertical) and radial epicyclic
oscillations. We show how the standard relativistic precession model modified
by the tidal charge fits the observational data, giving estimates of the
allowed values of the tidal charge and the brane tension based on the processes
going in the vicinity of neutron stars. We compare the strong field regime
restrictions with those given in the weak-field limit of solar system
experiments.Comment: 26 pages, 6 figure
Voice-based assessments of trustworthiness, competence, and warmth in blind and sighted adults
The study of voice perception in congenitally blind individuals allows researchers rare insight into how a lifetime of visual deprivation affects the development of voice perception. Previous studies have suggested that blind adults outperform their sighted counterparts in low-level auditory tasks testing spatial localization and pitch discrimination, as well as in verbal speech processing; however, blind persons generally show no advantage in nonverbal voice recognition or discrimination tasks. The present study is the first to examine whether visual experience influences the development of social stereotypes that are formed on the basis of nonverbal vocal characteristics (i.e., voice pitch). Groups of 27 congenitally or early-blind adults and 23 sighted controls assessed the trustworthiness, competence, and warmth of men and women speaking a series of vowels, whose voice pitches had been experimentally raised or lowered. Blind and sighted listeners judged both men’s and women’s voices with lowered pitch as being more competent and trustworthy than voices with raised pitch. In contrast, raised-pitch voices were judged as being warmer than were lowered-pitch voices, but only for women’s voices. Crucially, blind and sighted persons did not differ in their voice-based assessments of competence or warmth, or in their certainty of these assessments, whereas the association between low pitch and trustworthiness in women’s voices was weaker among blind than sighted participants. This latter result suggests that blind persons may rely less heavily on nonverbal cues to trustworthiness compared to sighted persons. Ultimately, our findings suggest that robust perceptual associations that systematically link voice pitch to the social and personal dimensions of a speaker can develop without visual input
Wooden recorders from archaeological sites in Europe
The article describes twelve recorders excavated from archaeological sites dating back to the Mediaeval times and the Renaissance. Three of them are in the museums in Germany, two in the Netherlands and one in Estonia. Six are in Polish museum collections. The flutes from five locations (Puck, Nysa, Płock, Toruń and Warsaw) are described in this paper for the first time. All the instruments from the Polish territory have been accurately measured and identified for the kind of wood from which they were made. All the flutes were made from one piece of wood of the following tree genera: lilac (Nysa, Płock), plum (Dordrecht, Göttingen), cherry (Würzburg), maple (Elblag, Toruń, Tartu), boxwood (Esslingen, Amsterdam) and spruce (Puck, Warsaw). The oldest known recorders were primarily made of fruit tree wood (Würzburg, Dordrecht, Göttingen). Interesting was the use of spruce wood (softwood) for making aerophones, absent in the later preserved instruments of this type
- …