1,211 research outputs found

    Relation of air mass history to nucleation events in Po Valley, Italy, using back trajectories analysis

    Get PDF
    International audienceIn this paper, we study the transport of air masses to San Pietro Capofiume (SPC) in Po Valley, Italy, by means of back trajectories analysis. Our main aim is to investigate whether air masses originate over different regions on nucleation event days and on nonevent days, during three years when nucleation events have been continuously recorded at SPC. The results indicate that nucleation events occur frequently in air masses arriving from Central Europe, whereas event frequency is much lower in the air transported from southern directions and from the Atlantic Ocean. We also analyzed the behaviour of meteorological parameters during 96 h transport to SPC, and found that, on average, event trajectories undergo stronger subsidence during the last 12 h before the arrival at SPC than nonevent trajectories. This causes a reversal in the temperature and relative humidity (RH) differences between event and nonevent trajectories: between 96 and 12 h back time, temperature is lower and RH is higher for event than nonevent trajectories and between 12 and 0 h vice versa. Boundary layer mixing is stronger along the event trajectories compared to nonevent trajectories. The absolute humidity (AH) is similar for the event and nonevent trajectories between about 96 h and about 60 h back time, but after that, the event trajectories AH becomes lower due to stronger rain. We also studied transport of SO2 to SPC, and conclude that although sources in Po Valley most probably dominate the measured concentrations, certain Central and Eastern European sources also make a substantial contribution

    Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and Hyytiälä

    Get PDF
    This study investigates the connections between atmospheric sulphuric acid and new particle formation during QUEST III and BACCI/QUEST IV campaigns. The campaigns have been conducted in Heidelberg (2004) and Hyytiälä (2005), the first representing a polluted site surrounded by deciduous forest, and the second a rural site in a boreal forest environment. We have studied the role of sulphuric acid in particle formation and growth by determining 1) the power-law dependencies between sulphuric acid ([H<sub>2</sub>SO<sub>4</sub>]), and particle concentrations (<I>N</I><sub>3&ndash;6</sub>) or formation rates at 1 nm and 3 nm (<I>J</i><sub>1</sub> and <I>J</I><sub>3</sub>); 2) the time delays between [H<sub>2</sub>SO<sub>4</sub>] and <I>N</I><sub>3&ndash;6</sub> or <I>J</I><sub>3</sub>, and the growth rates for 1&ndash;3 nm particles; 3) the empirical nucleation coefficients <I>A</I> and <I>K</I> in relations <I>J</I><sub>1</sub>=<I>A</I>[H<sub>2</sub>SO<sub>4</sub>] and <I>J</I><sub>1</sub>=<I>K</I>[H<sub>2</sub>SO<sub>4</sub>]<sup>2</sup>, respectively; 4) theoretical predictions for <I>J</I><sub>1</sub> and <I>J</I><sub>3</sub> for the days when no significant particle formation is observed, based on the observed sulphuric acid concentrations and condensation sinks. In both environments, <I>N</I><sub>3&ndash;6</sub> or <I>J</I><sub>3</sub> and [H<sub>2</sub>SO<sub>4</sub>] were linked via a power-law relation with exponents typically ranging from 1 to 2. The result suggests that the cluster activation theory and kinetic nucleation have the potential to explain the observed particle formation. However, some differences between the sites existed: The nucleation coefficients were about an order of magnitude greater in Heidelberg than in Hyytiälä conditions. The time lags between <I>J</I><sub>3</sub> and [H<sub>2</sub>SO<sub>4</sub>] were consistently lower than the corresponding delays between <I>N</I><sub>3&ndash;6</sub> and [H<sub>2</sub>SO<sub>4</sub>]. The exponents in the <I>J</I><sub>3</sub>&#x221D;[H<sub>2</sub>SO<sub>4</sub> ]<sup>n<sub>J3</sub></sup>-connection were consistently higher than or equal to the exponents in the relation <I>N</I><sub>3&ndash;6</sub>&#x221D;[H<sub>2</sub>SO<sub>4</sub> ]<sup>n<sub>N36</sub></sup>. In the <I>J</I><sub>1</sub> values, no significant differences were found between the observed rates on particle formation event days and the predictions on non-event days. The <I>J</I><sub>3</sub> values predicted by the cluster activation or kinetic nucleation hypotheses, on the other hand, were considerably lower on non-event days than the rates observed on particle formation event days. This study provides clear evidence implying that the main process limiting the observable particle formation is the competition between the growth of the freshly formed particles and their loss by scavenging, rather than the initial particle production by nucleation of sulphuric acid. In general, it can be concluded that the simple models based on sulphuric acid concentrations and particle formation by cluster activation or kinetic nucleation can predict the occurence of atmospheric particle formation and growth well, if the particle scavenging is accurately accounted for

    Biogeophysical impacts of peatland forestation on regional climate changes in Finland

    Get PDF
    Land cover changes can impact the climate by influencing the surface energy and water balance. Naturally treeless or sparsely treed peatlands were extensively drained to stimulate forest growth in Finland over the second half of 20th century. The aim of this study is to investigate the biogeophysical effects of peatland forestation on regional climate in Finland. Two sets of 18-year climate simulations were done with the regional climate model REMO by using land cover data based on pre-drainage (1920s) and post-drainage (2000s) Finnish national forest inventories. In the most intensive peatland forestation area, located in the middle west of Finland, the results show a warming in April of up to 0.43 K in monthly-averaged daily mean 2 m air temperature, whereas a slight cooling from May to October of less than 0.1 K in general is found. Consequently, snow clearance days over that area are advanced up to 5 days in the mean of 15 years. No clear signal is found for precipitation. Through analysing the simulated temperature and energy balance terms, as well as snow depth over five selected subregions, a positive feedback induced by peatland forestation is found between decreased surface albedo and increased surface air temperature in the snow-melting period. Our modelled results show good qualitative agreements with the observational data. In general, decreased surface albedo in the snow-melting period and increased evapotranspiration in the growing period are the most important biogeophysical aspects induced by peatland forestation that cause changes in climate. The results from this study can be further integrally analysed with biogeochemical effects of peatland forestation to provide background information for adapting future forest management to mitigate climate warming effects. Moreover, they provide insights about the impacts of projected forestation of tundra at high latitudes due to climate change

    Rotational Periods and Starspot Activity of Young Solar-Type Dwarfs in the Open Cluster IC 4665

    Get PDF
    We present the results of a V-band photometric monitoring survey of 15 late-type dwarfs in the young open cluster IC 4665. Low-amplitude periodic light variations are found for 8 stars and ascribed to the modulation by starspots that cover typically a few percent of the stellar disk. Periods range from 0.6 to 3.7 d, translating to equatorial velocities between 13 and 93 km/s. That no period longer than 4 d was detected suggests a relative paucity of extremely slow rotators (V(sub eq) much less than 10 km/s) among late-type dwarfs in IC 4665. The fractional number of slow rotators in IC 4665 is similar to that of Alpha Per cluster, suggesting that IC 4665 is close in age to Alpha Per (approx. 50 Myr)

    Nucleation and growth of new particles in Po Valley, Italy

    Get PDF
    Aerosol number distribution measurements are reported at San Pietro Capofiume (SPC) station (44&deg;39&apos; N, 11&deg;37&apos; E) for the time period 2002&ndash;2005. The station is located in Po Valley, the largest industrial, trading and agricultural area in Italy with a high population density. New particle formation was studied based on observations of the particle size distribution, meteorological and gas phase parameters. The nucleation events were classified according to the event clarity based on the particle number concentrations, and the particle formation and growth rates. Out of a total of 769 operational days from 2002 to 2005 clear events were detected on 36% of the days whilst 33% are clearly non-event days. The event frequency was high during spring and summer months with maximum values in May and July, whereas lower frequency was observed in winter and autumn months. The average particle formation and growth rates were estimated as ~6 cm<sup>&minus;3</sup> s<sup>&minus;1</sup> and ~7 nm h<sup>&minus;1</sup>, respectively. Such high growth and formation rates are typical for polluted areas. Temperature, wind speed, solar radiation, SO<sub>2</sub> and O<sub>3</sub> concentrations were on average higher on nucleation days than on non-event days, whereas relative and absolute humidity and NO<sub>2</sub> concentration were lower; however, seasonal differences were observed. Backtrajectory analysis suggests that during majority of nucleation event days, the air masses originate from northern to eastern directions. We also study previously developed nucleation event correlations with environmental variables and show that they predict Po Valley nucleation events with variable success

    New rotation periods in the Pleiades: Interpreting activity indicators

    Get PDF
    We present results of photometric monitoring campaigns of G, K and M dwarfs in the Pleiades carried out in 1994, 1995 and 1996. We have determined rotation periods for 18 stars in this cluster. In this paper, we examine the validity of using observables such as X-ray activity and amplitude of photometric variations as indicators of angular momentum loss. We report the discovery of cool, slow rotators with high amplitudes of variation. This contradicts previous conclusions about the use of amplitudes as an alternate diagnostic of the saturation of angular momentum loss. We show that the X-ray data can be used as observational indicators of mass-dependent saturation in the angular momentum loss proposed on theoretical grounds.Comment: 24 pages, LaTex (AASTeX); includes 8 postscript figures and 4 Latex tables. To appear in ApJ, Feb. 1, 1998. Postscript version of preprint can be obtained from http://casa.colorado.edu/~anitak/pubs.htm

    Associations between daily sitting time and the combinations of lifestyle risk factors in men

    Get PDF
    Background: Understanding the reciprocal role that multiple problematic behaviours play in men's health is important for intervention delivery and for reducing the healthcare burden. Data regarding the concurrence of problematic health behaviours is currently limited but offers insights into risk profiles, and should now include total time spent sitting/day. Methods: Self-reported data on lifestyle health behaviours was collected from 232 men aged ≥18 years who engaged in a men's health promotion programme delivered by 16 English Premier League Clubs. Results: Men at risk due to high sitting display multiple concurrent lifestyle risk factors, 88.6% displayed at least two ancillary risk factors and were three times more likely to report ≥2 lifestyle risk factors (OR. =3.13, 95% confidence interval (CI). =1.52-6.42) than those with low sitting risk. Significant differences in the mean number of risk factors reported between those participants in the higher risk (2.43. ±. 0.90) and lower risk (2.13. ±. 0.96) sitting categories were also found (P=0.015). Conclusions: Hard-to-reach men displayed multiple problematic concurrent behaviours, strongly linked to total sitting time. © 2012 WPMH GmbH

    CCN activation of fumed silica aerosols mixed with soluble pollutants

    Get PDF
    Particle-water interactions of completely soluble or insoluble particles are fairly well understood but less is known of aerosols consisting of mixtures of soluble and insoluble components. In this study, laboratory measurements were performed to investigate cloud condensation nuclei (CCN) activity of silica particles mixed with ammonium sulfate (a salt), sucrose (a sugar) and bovine serum albumin known as BSA (a protein). The agglomerated structure of the silica particles was investigated using measurements with a differential mobility analyser (DMA) and an aerosol particle mass analyser (APM). Based on these data, the particles were assumed to be compact agglomerates when studying their CCN activation capabilities. Furthermore, the critical super-saturations of particles consisting of pure and mixed soluble and insoluble compounds were explored using existing theoretical frameworks. These results showed that the CCN activation of single-component particles was in good agreement with Kohler- and adsorption theory based models when the agglomerated structure was accounted for. For mixed particles the CCN activation was governed by the soluble components, and the soluble fraction varied considerably with particle size for our wet-generated aerosols. Our results confirm the hypothesis that knowing the soluble fraction is the key parameter needed for describing the CCN activation of mixed aerosols, and highlight the importance of controlled coating techniques for acquiring a detailed understanding of the CCN activation of atmospheric insoluble particles mixed with soluble pollutants.Peer reviewe
    corecore