68 research outputs found

    Understanding and Motivating Salesperson Resilience

    Get PDF
    Prior research has shown that approximately half of salespeople fail to achieve their targets each year. Not only is the role difficult but also sales jobs are often marked by high levels of stress, rejection, and burnout. Thus, salesperson resilience is critical. However, a gap remains in our understanding of how resilience influences performance and how managers can motivate salespeople to be more resilient. To answer these questions, we collected survey data from 110 salespeople from a large firm based in the Midwest, along with objective effort and performance data provided by the company prior to and following a poor performance review. Our analyses reveal that intrinsically motivated salespeople are more resilient than salespeople driven by a desire for financial compensation. In addition, resilience leads to sales performance through increasing two types of effort—both initiating more calls with customers and achieving longer average call duration. Hence, our findings demonstrate that resilient salespeople not only persevere but also become better at selling in the process

    An Ultra-Precise System for Electrical Resistivity Tomography Measurements

    Get PDF
    The objective of this research was to determine the feasibility of building and operating an ERT system that will allow measurement precision that is an order of magnitude better than existing systems on the market today and in particular if this can be done without significantly greater manufacturing or operating costs than existing commercial systems. Under this proposal, we performed an estimation of measurement errors in galvanic resistivity data that arise as a consequence of the type of electrode material used to make the measurements. In our laboratory, measurement errors for both magnitude and induced polarization (IP) were estimated using the reciprocity of data from an array of electrodes as might be used for electrical resistance tomography using 14 different metals as well as one non-metal - carbon. In a second phase of this study, using archival data from two long-term ERT surveys, we examined long-term survivability of electrodes over periods of several years. The survey sites were: the Drift Scale Test at Yucca Mountain, Nevada (which was sponsored by the U. S. Department of Energy as part of the civilian radioactive waste management program), and a water infiltration test at a site adjacent to the New Mexico Institute of Mines and Technology in Socorro, New Mexico (sponsored by the Sandia/Tech vadose program). This enabled us to compare recent values with historical values and determine electrode performance over the long-term as well as the percentage of electrodes that have failed entirely. We have constructed a prototype receiver system, made modifications and revised the receiver design. The revised prototype uses a new 24 bit analog to digital converter from Linear Technologies with amplifier chips from Texas Instruments. The input impedance of the system will be increased from 107 Ohms to approximately 1010 Ohms. The input noise level of the system has been decreased to approximately 10 Nanovolts and system resolution to about 1 Nanovolt at the highest gain range of 125 to 1. The receiver also uses very high precision and high temperature stability components. The goal is to improve the accuracy to better than 0.1%. The system has more receiver channels, eight, to allow efficient data collection at lower base frequencies. We are also implementing a frequency-domain acquisition mode in addition to the time-domain acquisition mode used in the earlier systems. Initial field tests were started in the fall of 2008. We conducted tests on a number of types of cable commonly used for resistivity surveys. A series of different tests were designed to determine if the couplings were primarily resistive, capacitive, or inductive in nature and to ascertain that the response was due to the cable cross-talk and did not depend on the receiver electronics. The results show that the problem appears to be primarily capacitive in nature and does not appear to be due to problems in the receiver electronics. Thus a great deal of emphasis has been placed on finding appropriate cables as well as stable electrodes that have low contact impedance at the very low current flows observed at the receiver. One of the issues in survey design and data collection has been determining how long one must wait before using the same electrode as a transmitter and as a receiver. A series of tests was completed in the laboratory sand tank where four-electrode measurements were made using the same dipole transmitters and dipole receivers (the dipoles used adjacent electrodes). For each data series, a single set of normal measurements were collected with no reciprocals and electrodes were never reused as a receiver after being used as a transmitter. After waiting a specified length of time, the reciprocal measurements were collected using a schedule of measurements. The order of this second schedule was rearranged such that if this second set of measurements were performed without first using the normal schedule, no electrode would be used as a receiver after being used as a transmitter. For this study, we cannot conclude that increasing the wait time increased or decreased the reciprocal errors, only that there was not a dramatic change in results with different wait times. Another issue in ERT data collection is the potential for the transmitter as well as the receiver end of an ERT system to create problems with reciprocity readings. Existing ERT systems typically use a constant voltage source. For the transmitter dipole, a constant voltage source has low output impedance, whereas a constant current source has high output impedance. Therefore, we devised an experiment to determine if a constant current source transmitter might produce smaller errors than a constant voltage source. These preliminary results suggest there is little or no difference in either resistivity or chargeability reciprocal errors using a constant voltage or constant current dipole drive source

    Atomic spectrometry update – a review of advances in environmental analysis

    Full text link

    Difference Inversion of ERT Data: a Fast Inversion Method for 3-D In Situ Monitoring

    No full text

    Electrical resistance tomography.

    No full text
    Electrical resistance tomography (ERT) is a method that calculates the subsurface distribution of electrical resistivity from a large number of resistance measurements made from electrodes. For in-situ applications, ERT uses electrodes on the ground surface or in boreholes. It is a relatively new imaging tool in geophysics. The basic concept was first described by Lytle and Dines as a marriage of traditional electrical probing (introduced by the Schlumberger brothers) and the new data inversion methods of tomography. Development of both the theory and practice of ERT was confined mostly to the late 1980s and the 1990s. Tomographic inversion added important new capabilities as it was more general, accurate, and rigorous at spatial imaging of geophysical electrical resistance data than earlier pseudosection or curve fitting methods. An early application of geophysical ERT was to image laboratory core samples under test but practical field scale use of ERT was delayed by the lack of suitable measurement and test equipment. ERT requires the same four electrode resistance measurement used by the Schlumberger brothers (two electrodes to inject current and two other electrodes to measure the resulting potential); however, tomography requires addressing tens or hundreds of electrodes and making hundreds or thousands of such measurements in a timely fashion. Clearly, the available manual measurement systems that were designed for one, or perhaps a few measurements at a time, were not practical for ERT. High-speed, automated systems were needed
    • …
    corecore