195 research outputs found

    Expression of Cell-Cycle Regulatory Proteins pRb, Cyclin D1, and p53 Is Not Associated with Recurrence Rates of Equine Sarcoids

    Get PDF
    Sarcoids are among the most common tumors diagnosed in equids; their association with bovine papillomaviruses (BPV) infection has been widely reported, but the mechanism of carcinogenesis has not been fully elucidated. To verify whether BPV infection causes dysregulation of the pRb-Cyclin D1-p16CDKN2A-p53 pathway as reported for human papillomavirus (HPV), the study employed immunohistochemistry to test 55 equine sarcoid biopsies for the expression of pRb, Cyclin D1, and p53 cell cycle regulatory proteins and to evaluate the proliferative rate through Ki67. High Cyclin D1 and pRb expression were observed in 51% and 80% of cases, respectively, while low expression was observed in 49% and 20% of cases, respectively. Significantly higher Ki67 proliferation indexes were observed in fibroblastic, nodular, and mixed sarcoids compared to the occult and verrucous. High proliferation was significantly associated with high Cyclin D1 expression. In contrast with previous studies, p53 positivity was not observed in the cases examined in this study. Moreover, follow-up analysis revealed that fibroblastic, mixed sarcoids were associated with significantly higher local recurrence rates while the verrucous subtype was associated with higher rates of new sarcoid development at distant sites

    Remarkable genomic diversity among Escherichia isolates recovered from healthy chickens

    Get PDF
    The genus Escherichia has been extensively studied and it is known to encompass a range of commensal and pathogenic bacteria that primarily inhabit the gastrointestinal tracts of warm-blooded vertebrates. However, the presence of E. coli as a model organism and potential pathogen has diverted attention away from commensal strains and other species in the genus. To investigate the diversity of Escherichia in healthy chickens, we collected fecal samples from antibiotic-free Lohmann Brown layer hens and determined the genome sequences of 100 isolates, 81 of which were indistinguishable at the HC0 level of the Hierarchical Clustering of Core Genome Multi-Locus Sequence Typing scheme. Despite initial selection on CHROMagar Orientation medium, which is considered selective for E. coli, in silico phylotyping and core genome single nucleotide polymorphism analysis revealed the presence of at least one representative of all major clades of Escherichia, except for E. albertii, Shigella, and E. coli phylogroup B2 and cryptic clade I. The most frequent phylogenomic groups were E. coli phylogroups A and B1 and E. ruysiae (clades III and IV). We compiled a collection of reference strains isolated from avian sources (predominantly chicken), representing every Escherichia phylogroup and species, and used it to confirm the phylogeny and diversity of our isolates. Overall, the isolates carried low numbers of the virulence and antibiotic resistance genes typically seen in avian pathogenic E. coli. Notably, the clades not recovered are ones that have been most strongly associated with virulence by other studies

    Phenotypic microarrays suggest Escherichia coli ST131 is not a metabolically distinct lineage of extra-intestinal pathogenic E. coli

    Get PDF
    Extraintestinal pathogenic E. coli (ExPEC) are the major aetiological agent of urinary tract infections (UTIs) in humans. The emergence of the CTX-M producing clone E. coli ST131 represents a major challenge to public health worldwide. A recent study on the metabolic potential of E. coli isolates demonstrated an association between the E. coli ST131 clone and enhanced utilisation of a panel of metabolic substrates. The studies presented here investigated the metabolic potential of ST131 and other major ExPEC ST isolates using 120 API test reagents and found that ST131 isolates demonstrated a lower metabolic activity for 5 of 120 biochemical tests in comparison to non-ST131 ExPEC isolates. Furthermore, comparative phenotypic microarray analysis showed a lack of specific metabolic profile for ST131 isolates countering the suggestion that these bacteria are metabolically fitter and therefore more successful human pathogens

    Crystal Structure of EHEC Intimin: Insights into the Complementarity between EPEC and EHEC

    Get PDF
    Enterohaemorrhagic E. coli (EHEC) O157:H7 is a primary food-borne bacterial pathogen capable of causing life-threatening human infections which poses a serious challenge to public health worldwide. Intimin, the bacterial outer-membrane protein, plays a key role in the initiating process of EHEC infection. This activity is dependent upon translocation of the intimin receptor (Tir), the intimin binding partner of the bacteria-encoded host cell surface protein. Intimin has attracted considerable attention due to its potential function as an antibacterial drug target. Here, we report the crystal structure of the Tir-binding domain of intimin (Int188) from E. coli O157:H7 at 2.8 Ã… resolution, together with a mutant (IntN916Y) at 2.6 Ã…. We also built the structural model of EHEC intimin-Tir complex and analyzed the key binding residues. It suggested that the binding pattern of intimin and Tir between EHEC and Enteropathogenic E. coli (EPEC) adopt a similar mode and they can complement with each other. Detailed structural comparison indicates that there are four major points of structural variations between EHEC and EPEC intimins: one in Domain I (Ig-like domain), the other three located in Domain II (C-type lectin-like domain). These variations result in different binding affinities. These findings provide structural insight into the binding pattern of intimin to Tir and the molecular mechanism of EHEC O157: H7
    • …
    corecore