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RESEARCH ARTICLE Open Access

Antibiotic treatment triggers gut dysbiosis
and modulates metabolism in a chicken
model of gastro-intestinal infection
Caroline Ivanne Le Roy1,2* , Martin John Woodward1, Richard John Ellis3, Roberto Marcello La Ragione4

and Sandrine Paule Claus1*

Abstract

Background: Infection of the digestive track by gastro-intestinal pathogens results in the development of symptoms
ranging from mild diarrhea to more severe clinical signs such as dysentery, severe dehydration and potentially death.
Although, antibiotics are efficient to tackle infections, they also trigger dysbiosis that has been suggested to result in
variation in weight gain in animal production systems.

Results: Here is the first study demonstrating the metabolic impact of infection by a gastro-intestinal pathogen
(Brachyspira pilosicoli) and its resolution by antibiotic treatment (tiamulin) on the host (chicken) systemic metabolism and
gut microbiota composition using high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy and 16S rDNA
next generation sequencing (NGS). Clear systemic metabolic markers of infections such as glycerol and betaine were
identified. Weight loss in untreated animals was in part explained by the observation of a modification of systemic host
energy metabolism characterized by the utilization of glycerol as a glucose precursor. However, antibiotic treatment
triggered an increased VLDL/HDL ratio in plasma that may contribute to reducing weight loss observed in treated birds.
All metabolic responses co-occurred with significant shift of the microbiota upon infection or antibiotic treatment.

Conclusion: This study indicates that infection and antibiotic treatment trigger dysbiosis that may impact host systemic
energy metabolism and cause phenotypic and health modifications.

Keywords: Microbiota, Metabolism, Antibiotic, Energy, Dysbiosis

Background
Gut microbiota (GM) composition is known to
strongly influence host health by a wide range of
mechanisms ranging from control of immune func-
tions [1], metabolic homeostasis [2, 3] and drug me-
tabolism [4]. Even if generally stable within a species,
the GM composition is strongly impacted by environ-
mental exposure (nutrition, xenobiotics and infection)
and any modification of this ecosystem can affect host
health by altering the symbiotic relationship existing
between the host and its gut microbes [5]. For in-
stance, presence of an opportunistic pathogen in the
digestive tract can be asymptomatic but also induce

severe health damage. Furthermore, infection is gener-
ally associated with bacterial dysbiosis in the digestive
track [6], but the impact of such modification on the
host metabolism and development of symptom such
as weight loss is still poorly understood. Improvement
of symptoms is generally observed post antibiotic
treatment due to reduction in the number of patho-
genic bacteria and the decline of the sequelae of their
infection. However, antibiotic use is also associated
with a reduction of GM diversity that has been linked
to further host metabolic weakening [7].
Avian intestinal Spirochaetosis (AIS) is caused by the

colonization of bird’s lower digestive tract by the pathogen
Brachyspira pilosicoli (phylum Spirochaetes; class Spiro-
chaetes; order Spirochaetales; family Bracyspiraceae) [8, 9].
The bacterium attaches to the cell wall and may trigger
diarrhea associated with decreased growth rate and egg
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production [10]. The most common treatment used to
tackle infection is Tiamulin™, an antibiotic of the pleuromu-
tilin family that inhibits protein synthesis by binding to the
50S region of the ribosome [11, 12]. Only a few studies have
evaluated its efficiency in chickens despite its intensive use
to treat avian flocks in industry [13, 14]. To date this dis-
ease and its treatment have been little studied and remain
poorly understood. Indeed, the cause for symptoms such as
weight loss and decreased egg production are still unclear.
In a recent study [15], the efficiency of three doses of Tia-
mulin™ to treat laying hens orally challenged with B. pilosi-
coli B2904 was evaluated and revealed that infection was
associated with decreased growth rate and that birds
treated with Tiamulin™ recovered from infection regardless
of the dose used while weight maintenance was only ob-
served in response to the two highest doses. Furthermore,
Tiamulin™ reduced significantly other infection-associated
symptoms as well as systemic spread of B. pilosicoli. Never-
theless, three weeks after antibiotic treatment ended,
colonization of the digestive track by the pathogen was still
observed. Thus, we concluded that this study represented
an interesting infection model to understand host systemic
metabolic and gut microbiota response to colonization of
the digestive tract by a pathogen. In addition, the experi-
mental design allows a longitudinal exploration of the ef-
fects of antibiotic treatment on a superorganism (i.e. the
host and its gut microbiota). In this paper, we present re-
sults obtained following the analysis of biopsy and biofluid
samples collected during the previous study [15]. To evalu-
ate host systemic metabolic response to infection and anti-
biotic treatment we used 1H-NMR-based metabolomics
that allows a non-targeted evaluation of metabolic fluctua-
tions occurring in biological systems. As the gut microbiota

are inextricably linked to host’s metabolic responses,
its composition in response to infection and treat-
ment was monitored using 16S rRNA gene sequen-
cing (16S NGS). Both analyses provided new insights
into the impact of infection and antibiotic treatment
on host health, explaining physiological response to
both bacterial and chemical exposure.

Results
Infection and antibiotic treatment impact growth and egg
production
Impact of infection and egg production was monitored
along the study in all groups (A, control; B infected only;
C-E, infected and treated with Tiamulin™ from lowest to
highest dose). Infection by B. pilosicoli resulted in a signifi-
cantly decreased growth rate (Fig. 1b) but by the end of the
study, chickens from group B (Infected) weighed less than
birds from group A (Control) but this result was not signifi-
cant. The two highest Tiamulin™ doses (group D and E)
were able to maintain chicken’s growth since birds from
these two groups presented higher weights than those in
the control group by the end of the study and that this was
significantly higher to the infected group (p-value < 0.05).
However, animals treated with the lowest dose (Group C),
displayed an average weight at the end of the study that
was similar to the one of the infected group (B) and signifi-
cantly different to the other three (A, D and E). This sug-
gested that only higher doses of antibiotics were associated
with maintain growth rate during the infection.

Infection induces systemic metabolic response of the host
Systemic metabolic response to infection by B. pilosicoli
was observed directly after the end of the challenge

A B

Fig. 1 Experimental plan (a) and birds body weight (b)
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period (day 6). O-PLS-DA revealed that infection was
associated with a modification of kidney, liver, spleen
and plasma metabolomes (Fig. 2a, b, c and d). Livers of
infected birds were richer in glycerol, lactate, choline,
succinate and acetate (Fig. 2a). In the spleen, infection
resulted in decreased O-phosphocholine, glutamine and
AMP and increased glycerol, uracil, cytidine and leucine
(Fig. 2b). In kidney, infection induced an increase in
glycerol, uracil and xanthine contents, concomitant with
a decrease in inosine (Fig. 2c). Increased betaine and
glycerol were also associated with infection in plasma
(Fig. 2d). After infection (PM1), the content of the colon
of infected birds was richer in polysaccharides and
amino acids (Additional file 1). Two weeks after the end
of the infection period (PM2), kidney, liver and spleen of
infected but not treated birds had recovered their meta-
bolic homeostasis (there were no more detectable meta-
bolic differences between the control and any other
group), which indicates that no metabolic variations
were observed in response to infection. However, the
glucose level dropped in plasma of infected birds (Fig.
2e) by approximately 50%.
In the ileum, colon, caeca and pancreas no significant

metabolic variation in response to infection was ob-
served throughout the study.
By the end of the study it was not possible to differen-

tiate metabolically infected from uninfected birds.

Tiamulin™ treatment attenuates the metabolic response
to infection
We next investigated whether Tiamulin™ modulates the
metabolic responses of the host to infection. At PM2, a
higher plasma level of betaine was observed in response
to infection (p-value< 0.01 -Additional file 2). However,
birds infected and treated with Tiamulin™ presented
similar plasma level of betaine as the controls although
this response was not dose dependent.
In the previous section, it was described that infection

induced a drop in glucose in chicken plasma (p-value<
0.05 –Wilcoxon test-) at PM2 that was partially
alleviated by Tiamulin™ treatment. This was not fully
corrected by Tiamulin™ treatment since the decrease in
plasma glucose level was still lower than in the control
group (p-value< 0.05). Interestingly, plasma glucose
levels were inversely proportional to treatment dose
(Additional file 3).

Tiamulin™ treatment induces a major shift in lipid
metabolism
The PCA score plot displaying the general impact of treat-
ment on plasma metabolic profiles at PM2 (Fig. 3a)
revealed a clear separation between the scores of the birds
treated with Tiamulin™ and those un-treated on principal
component 1 (PC1). Indeed, scores of antibiotic treated

birds occupied a distinct metabolic space from control and
infected but untreated birds. Plasma metabolic profiles of
chickens treated with Tiamulin™ were characterized by
increased very low-density lipoprotein (VLDL) and
decreased high-density lipoprotein (HDL) levels (Fig. 3a, b
and c). A linear regression of the metabolic profiles against
the dose of antibiotics revealed that the effect on lipopro-
teins was dose dependent (Additional file 4).
Since the liver is the central regulating organ for

cholesterol and lipid metabolism, metabolic profiles of
intact liver biopsies were generated using HR-MAS
1H-NMR spectroscopy. This analysis revealed that the
liver of birds treated with Tiamulin™ were richer in li-
poproteins than non-treated birds (Fig. 3c and f ) sug-
gesting that the liver secreted more VLDL and
confirmed the impact of Tiamulin™ on central lipid
and cholesterol metabolism.

Tiamulin™ accelerates post-pubertal metabolic shift
When looking at the impact of Tiamulin™ on chicken
plasma metabolic profiles from the overall study (all
groups PM1, 2 and 3), it appeared that age was also a
strong source of metabolic variation (Fig. 4). Indeed, the
linear regression calculated on the plasma metabolic
profiles using age as a predictor returned a good model
as indicated by strong parameters (R2Y = 0.52, Q2Y =
0.51 and p-value = 0.002). Bird age was associated with
decreased HDL, glucose, succinate and lactate level,
while VLDL levels increased (Fig. 4). Analysis of the
scores (Fig. 4b) revealed that Tiamulin™ treated birds
were metabolically similar to post-pubertal birds (PM3 =
19 weeks) at PM2 (= 17 weeks) and that to the contrary,
untreated birds had similar metabolic profiles as birds
from the pre-pubertal group (PM1 = 16 weeks).

Infection and Tiamulin™ shifted caecal microbiota
composition
The composition of the caecal microbiota population
was evaluated in response to infection and Tiamulin™
treatment using 454 16S pyrosequencing of the V4-V5
hypervariable regions. The caecal microbiota population
was stable over time in the control group as shown by
the PCA score plots (Fig. 5a to c and Additional file 5).
Infection was associated with a modification of the

commensal caecal microbiota in comparison to control
(Fig. 5a and b), but community balance was recovered at
the end of the study (Fig. 5c). This modification of the
caecal microbiota was mainly associated with an increase
in Lactobacillales, Burkholderiales and Campylobacter-
ales, these last two orders being members of the Proteo-
bacteria phylum (Additional file 6).
After Tiamulin™ treatment the class of Spirochaetes to

which B. pilosicoli belongs was no longer detectable by
16S sequencing approaches (Fig. 5e). Yet, this bacterial
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Fig. 2 (See legend on next page.)
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class reappeared three weeks after the end of Tiamulin™
treatment. Furthermore, it was shown in the previous
publication that using more targeted methods, B. pilosi-
coli was detectable in every infected groups throughout
the study [15]. Their relative percentage of abundance
was higher than in both non-treated groups (up to 25%),
which is likely due to the bacteria entering a dormancy
state during Tiamulin™ treatment [16].
Using a MANOVA, we observed that α-diversity was

significantly associated with age (p-value = 0.047) and
treatment (p-value = 0.001) and the interaction between
both factors age*treatment (p-value = 7.1*10− 5). As ex-
pected, the antibiotic dosing was associated with a
strong decrease of the bacterial α-diversity in compari-
son to the control and the infected groups at PM2
(p-value = 0.007 and 4.8*10− 4 respectively, Fig. 5d).
However, by the end of the study the α-diversity of the
treated group was equivalent to the two other groups at
the same time point. Tiamulin™ treatment resulted in a
major shift in caecal β-diversity of the microbial com-
munity (Fig. 5b and Additional file 5). This was driven
by a decreased percentage in the relative abundance of
Firmicutes (from 30 to 22%) and an increase of the
phylum Bacteroidetes (from 60 to 71%). The Firmicutes/
Bacteroidetes ratio was changed from approximately 1:2
to 1:3. Although the microbial diversity evolved over
three weeks post Tiamulin™ treatment, it failed to return
to the initial composition by the end of the study and
continued to harbor a relatively high relative abundance
of Proteobacteria (Fig. 5b and c).

Discussion
Although a few studies have been published [17–20], lit-
tle is known about the relationship between the resili-
ence of the gut microbiota during intestinal diseases,
their recovery after antibiotic treatment and the overall
impact on the host metabolism, a knowledge gap that
motivated this study. Gastro-intestinal infections often
trigger gut microbiota dysbiosis, as does treatment by
antibiotics [21, 22]. Gut microbiota composition is
recognized for having an important role to play in host
growth and severe dysbiosis can be responsible for
abnormal development [23, 24]. We determined that the
intervention study aiming at an evaluation of the efficacy
of Tiamulin™ against AIS [15] would allow us to evaluate
whether the decreased growth rate associated with

infection was triggered by caecal microbiota dysbiosis. We
hypothesized that modifications of the gut microbiota by
infection would result in modulations of host metabolic
homeostasis that was corrected in this study using Tiamu-
lin™ treatment. Materials used for this paper were sampled
from a study that showed significantly decreased growth
rates amongst other clinical sequelae of egg laying
chickens in response to B. pilosicoli infection [15].
The infection resulted in an increase in Proteobacteria

of which many are opportunistic pathogens associated
with increased risk of diarrhea. Interestingly, Proteobac-
teria enrichment has been associated with metabolic
syndrome [25]. Increase in Proteobacteria has previously
been observed in response to Penicillin in mice that was
linked to increased body weight, percentage fat mass
and diabetes incidence [26].
In the present study, infection and bacterial dysbiosis

were concurrent with profound host systemic metabolic
changes. The range of tissues affected by infection (liver,
spleen, kidney and plasma) indicates a systemic metabolic
response of the organism to B. pilosicoli colonization and
dysbiosis. Interestingly increased glycerol levels were no-
ticeable in all aforementioned compartments. Systemic gly-
cerol increase is a marker of lipolysis in adipose tissues
where triglycerides are lysed into free fatty acids and gly-
cerol by lipase enzymes. Glycerol is then released in the
general circulation to be used as a glucose precursor in the
liver and/or the kidney. This mechanism is generally acti-
vated by prolonged low plasma glucose levels. In addition,
GI infection can impair glucose absorption due to gut bar-
rier disruption and it thus possible that this phenomenon
was also triggered by reduced intestinal glucose uptake. B.
pilosicoli is known to strongly disrupt the intestinal wall
[27], which was further supported by the observation of
higher glucose levels in feces of infected birds. The in-
creased polysaccharides in feces may also be associated
with the ability of B. pilosicoli to degrade mucin [28–30].
Furthermore, the concomitant increase in butyrate and
acetate observed during the infection attests higher carbo-
hydrate fermentation and therefore a modification of the
GM metabolic activity. Plasma glucose concentration is
highly controlled and regulated since its level needs to be
maintained to sustain essential functions such as brain and
muscular activity. To maintain glucose levels gluconeogen-
esis from glycerol is activated during fasting, which requires
fat storage to release non-esterified fatty acids and glycerol

(See figure on previous page.)
Fig. 2 B. pilosicoli infection is associated with major systemic metabolism modifications. a Scores (right panel) and loadings (left panel) plots of
the O-PLS-DA model calculated using 1D-NMR spectra of birds’ liver at PM1 as a matrix of independent variables and infection as a predictor
infected birds (red square) and uninfected birds (blue circle). Loading plots shape represent the mean standard deviation of all NMR spectra
acquired for the given model and multiplied by the O-PLS DA model weight that allow to visualize if metabolites are positively associated with
infection (pointing downwards) or negatively (pointing upwards). The color scale represent the level of correlation between each data point and
infection. b Same for the spleen. c same for the kidney. d same for the plasma. e same for the plasma at T1
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in plasma. This reduction of fat mass is likely to be related
to the decreased growth rate observed in chickens colo-
nized by B. pilosicoli [15, 31]. However, the drop in plasma
glucose level observed at PM2 following recovery of gly-
cerol levels, suggests that this alternative metabolic pathway
cannot sustain the energy demand for a long time.

Complete recovery of host metabolic homeostasis in
response to infection was reached at the end of the study
(PM3). This coincided with a net decrease in percentage
of infected birds in all groups [15] and a stabilization of
the caecal microbiota. Hence, symptoms and noticeable
metabolic responses of the host to infection occurred

A B

E F

C D

Fig. 3 Tiamulin induces plasmatic metabolic variations. a PCA score plot on the first (T1 48%) and the fourth (T4 5%) principal component derived from
the model calculated using the 1d-NMR spectra of birds’ plasma at PM2. b Color-coded plot of the plasma 1D-NMR spectra of control birds (blue), infected
and non-treated birds (pink) and treated birds (green). c Plot of the principal component 1 (PC1) loadings, molecules pointing up positively correlated with
PC1, molecules pointing down negatively correlated with PC1. d Plot of the principal component 4 (PC4) loadings, molecules pointing up positively
correlated with PC4, molecule pointing down negatively correlated with PC4. e PCA scores plot derived from the model calculated using the 1H HR-MAS
NMR spectra acquired from intact liver biopsies. f Plot of the loadings of principal component 1 (PC1) of the PCA model presented in E
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only when microbiota dysbiosis was observed. Such an
observation suggests that both presence of the pathogen
and modification of gut microbial community are neces-
sary to trigger host metabolic responses. The idea that
the GM might act as a buffer regulating host metabolic
response to infection by a pathogen has been partially
explored by Khosravi et al. [32], who showed that Heli-
cobacter pylori infection triggered a stronger host meta-
bolic response (modification of insulin, ghrelin and
leptin levels) in germ free mice than in conventional
animals and that infection-induced decreased growth
rate was only observed in absence of GM. This tolerance
to pathogen has been associated with the training of the
immune system. Thus, an infection can be considered as

a response to an ecosystem variation rather than to
colonization by a single pathogen.
In this set of results, Tiamulin™ was able to reduce

infection-induced metabolic response, the betaine
increase and glucose drop in plasma. Although a dose
response was observed on the level of infection mea-
sured by positive swabs [15], this was not true for the
plasma betaine levels. It is likely that increased betaine
levels in response to infection was related to the central
osmoprotectant role of this molecule [33]. Betaine has
been used previously as food supplement for chickens
due to its ability to protect the gut barrier against patho-
gens such as Coccidia [34]. Indeed, B. pilosicoli cell inva-
sion induces swelling and disturbance of the osmotic

A

C

B

Fig. 4 Age is related to increased VLDL and decrease HDL and glucose level. a Color-coded plot of the plasma 1D-NMR spectra of 16 weeks old
birds (blue), 17 weeks old birds (red) and 19 weeks old birds (black). b Plot of the scores of the O-PLS regression model calculated using 1H-NMR
spectra of birds at all time point as a matrix of independent variables and the birds’ age as a predictor. c O-PLS regression coefficient plot related
to the birds age
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balance [9, 27]. Increased quantities of betaine (generally
coming from kidneys) may therefore be transported
from other tissues towards the gut barrier via general
circulation explaining its increased level in plasma.
We observed that normal ‘metabolic aging’ (decreased

HDL/VLD and glucose plasma levels) occurring at
puberty was accelerated by Tiamulin™ treatment. Interest-
ingly, decreased of the HDL/VLDL ratio and glucose
levels in the general circulation have been associated with
increased levels of steroid hormones and more specifically
progesterone [35–37]. Cytochrome P450 3A (CYP3A, an
important enzyme family present in the liver involved in
drug detoxification) are involved in steroid hormone
metabolism (progesterone, estrogen and testosterone). In
addition, it was shown in several studies that a decrease in
CYP3A activity generally resulted in increased plasma
steroid hormone concentrations [38–40]. Antibiotics are
active molecules that can interact directly with the host if

able to cross the gut barrier. It has been reported that
Tiamulin™ interacts with CYP3A, forming a complex that
results in the inactivation of the cytochrome in vitro and
in vivo [41–44]. Therefore, it is likely that the observed
pre-puberty metabolic shift resulted from the interaction
of Tiamulin™ with progesterone metabolism. This was
further supported by the fact that egg laying onset, which
highly depends on steroids metabolism maturation,
occurred earlier in the two groups receiving the highest
doses of Tiamulin™ [15]. Altogether, this supports the po-
tential interaction of Tiamulin™ with steroid metabolism.
Finally, the lipoprotein shift may also be caused by the

gut microbiota modifications due to antibiotic treatment.
The host-GM metabolic interplay has been widely inves-
tigated. Indeed, many studies have reported that obesity
and energy metabolism homeostasis are strongly associ-
ated with gut microbiota composition [24, 45–47].
Furthermore, it has been demonstrated that the use of

A B C

Fig. 5 Tiamulin treatment enhances a profound alteration of gut microbial diversity and population. a PCA score plots calculated using the bacterial
relative percentage of abundance at family level for all birds but displaying only the scores (n = 8) of control (blue circle) and infected birds (pink
square) post infection (T0). b Same PCA score plot than A but displaying only the scores (n = 8) of control (blue circle), infected birds (pink square) and
birds treated with highest dose (green triangles) post treatment (T1). c Same PCA score plot than A and B but displaying only the scores of control
(blue circle), infected birds (pink square) and treated birds (green triangles) three weeks post treatment (T2). d Alpha diversity calculated for control,
infected and treated birds independently of time. e Pie chart presenting the bacterial relative abundance at a phylum level for each group (control,
infected and treated) for the three time points chosen in this study
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antibiotics before puberty in humans and mice can be
associated with increased risk of metabolic disorders due
to modulations of the gut microbiota [26, 48, 49]. Inter-
estingly, a low Firmicutes/Bacteroidetes ratio has been
reported to be related to a lean phenotype and lower risk
of developing disorders characterized by modification of
cholesterol metabolism [2, 50, 51]. However, this is con-
trary to our observations which suggests that the VLDL/
HDL modification detected might be driven by the
Tiamulin™ itself rather than by microbiota modifications:
whether this is a generalizable phenomenon for some or
all classes of antibiotic is clearly very worthy of future
study. Also we need be mindful that other bacterial
changes may be responsible for modification of choles-
terol metabolism: indeed some lactic acid bacteria are
known to be able to metabolize cholesterol [52] and
their use as feed supplement in broiler chickens resulted
in decreased plasma cholesterol concentrations [53].
Hence, further experimentation would be needed to
tease these aspects apart.

Conclusion
This work demonstrates that gut microbiota compos-
ition can be associated with perturbations of host
systemic metabolism that lead towards phenotypical
changes. We observed that infection was associated with
dysbiosis, decreased nutrient absorption and host energy
metabolic disorder that resulted in significantly reduced
growth rate. Two systemic biomarkers of infection were
identified as glycerol and betaine. Increased systemic
glycerol clearly illustrated host metabolic adaptation to
intestinal infection directed towards providing sufficient
energy supplies for survival. However, impaired weight
gain was still observed presumably, as glycerol was likely
to be supplied from adipose tissue. In addition, symp-
toms due to colonization by the pathogen were only ob-
served when associated with gut microbial dysbiosis.
This finding strongly supports the potential protective
role of the gut microbiota against opportunistic patho-
gens. This indicates that further studies should be
undertaken to understand the ecological context in
which a pathogenic bacterium might become harmful
for its host. In this study, the antibiotic treatment
reduced infection and associated symptoms while modi-
fying cholesterol metabolism. From our results, and
previously published work we hypothesized that host
metabolic response to antibiotic treatment resulted from
a co-occurring modification of the gut microbiota com-
position and steroids metabolism. These findings suggest
that impact of antibiotic consumption on host energy
metabolism should be studied as a response of a direct
interaction and through mediation of the gut microbiota.
Finally, antibiotic triggered a decrease in α-diversity
followed by dysbiosis that might lead to higher

vulnerability to colonization by pathogen and favor
relapse. Therefore, antibiotic treatment coupled to food
supplements such as pre/pro/symbiotic should be con-
sidered in order to recover a ‘healthier’ gut microbiota
post intervention.

Methods
Animal study and experimental design
Briefly, 150 16–17 weeks old NovoGen Brown commer-
cial layer hens sourced from a commercial supplier
(Tom Barron Ltd., UK) were housed at the APHA
(Addlestone, Surrey, UK) according to Home Office
guidelines (Home office license -PPL 70/7249-) and all
procedures were performed in compliance with the Ani-
mals Scientific Procedures Act, 1986. After the study,
animals were incinerated onsite to avoid risk of contam-
ination by the pathogen to the environment.
The experimental plan was described previously by

Woodward et al. [15] and for clarity is summarized in
Fig. 1. The animals were allocated randomly to five
groups (n = 30) given the following treatments: Group A:
Untreated, uninfected controls; Group B: Untreated, in-
fected controls; Group C: Infected + Tiamulin™ at 62.5
ppm; Group D: Infected + Tiamulin™ at 125 ppm; Group
E: Infected + Tiamulin™ at 250 ppm.
After crop neutralization, birds were challenged by

oral gavage with 1 mL of B. pilosicoli B2904 suspension
(5 × 109 CFU/ml) for five days every two days [54]. One
week after the end of the challenge, group C, D and E
received different concentrations of Tiamulin™ in the
drinking water for five days. Birds were then observed
for three weeks. Feed was un-medicated layer pellets
(Dodson and Horrell) and water was provided from the
mains supply, birds had access to both ad libitum.

Sample collection from animal study
Biopsies, plasma and faecal samples were collected dur-
ing post-mortem examination at three time points: the
day after the end of the infection process (PM1), the day
after the end of the antibiotic treatment (PM2) and at
the end of the study (PM3) (Fig. 1a). For each group and
time point eight birds were randomly selected and
euthanasia was performed by sedation using Rompun/
Ketamine mixture as an intramuscular injection followed
by an intravenous injection of Pentobarbitone. Blood
was sampled first from the heart and serum was frozen
at − 80 °C after clot. Tissue biopsy samples (Approxi-
mately 1 g for all tissue) and faecal samples collected dir-
ectly from the intestinal track for both coon and caeca
(approx. 1 g) were snap frozen in liquid nitrogen and
then stored at − 80 °C for future assessement of their
metabolic composition and cecal microbiome profiling.
Data regarding the general impact of infection and

Tiamulin™ treatment on birds’ level of infection, growth,
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health condition (scored via observation of the bird fea-
ther and muscular development), egg production, water
and food consumption are also explained in the afore-
mentioned article [15] and are not repeated here.

Sample preparation for NMR
Kidney, pancreas, spleen and liver polar metabolite extrac-
tion was done by homogenizing 0.1 g of tissue in 1mL of
3:1 (v/v) methanol/H2O solution using a tissue lyser [55].
After centrifugation (10min at 12000 x g), supernatants
were dried in a speed vacuum and resuspended in 600 μL
of phosphate buffer (0.2M) containing 90% of D2O and
10% of H2O plus 0.01% of sodium 3-(tri-methylsilyl)-pro-
pionate-2,3-d4 (TSP used as internal standard). Samples
(0.5mL) were then transferred to 5mm NMR tubes for
acquisition. Plasma samples were mixed to phosphate sa-
line buffer with 90% D2O at a 2:1 (v/v) ratio, 0.5 mL were
then transferred to 5mm NMR tubes. 0.0150 g of liver bi-
opsy were added with phosphate buffer in spinner for
solid state NMR spectroscopy.

NMR spectroscopy
For tissues 1H-NMR spectra were acquired on a 700
MHz Bruker Advance Spectrometer using a standard
noesypr1D pulse program with water presaturation
(relaxation delay of 2 s and 100 ms of mixing time).
Plasma 1D NMR spectra were acquired using a
Carr-Purcell-Meiboom-Gill (CPMG) pulse. Liver biop-
sies were acquired on 500MHz Bruker Advance Spec-
trometer using a 1H HR MAS probe. Spectra were
acquired using a standard noesypr1D pulse as well as
CPMG. For all matrixes, 2D NMR experiments were
run on selected samples to help metabolites identifi-
cation as well as a previously published chicken meta-
bolic atlas [55]. Spectra were acquired with using 256
scans with 16 dummy scans (DS). All spectra were re-
corded as 64 k data points (15 ppm).

DNA extraction methods for 16S based population
studies
DNA from faecal samples were extracted using Power-
Soil® DNA Isolation Kit (MO BIO Laboratories, Inc) pur-
chased by Qiagen. To ensure DNA samples quality, PCR
of the universal V4-V5 region of the 16S rRNA was per-
formed post extraction (cycling conditions: 94 °C for 3
min; 30 cycles of 94 °C for 30 s, 55 °C for 45 s, 72 °C for
1 min; followed by 72 °C for 8 min) and concentration
was assessed using a Nano drop. PCR primers were the
following:

U515F: 5’-GTGYCAGCMGCCGCGGTA
U927R: 5’-CCCGYCAATTCMTTTRAGT

Next generation 16S sequencing
Aliquots of extracted DNA were amplified with universal
primers for the V4 and V5 regions of the 16S rRNA gene.
The primers U515F (5’-GTGYCAGCMGCCGCGGTA)
and U927R (5’-CCCGYCAATTCMTTTRAGT) were de-
signed to permit amplification of both bacterial and
archaeal ribosomal gene regions [56]. Forward fusion
primers consisted of the GS FLX Titanium primer A and
the library key (5’-CCATCTCATCCCTGCGTGTCTCCG
ACTCAG) together with one of a suite of eight 10 base
multiplex identifiers (MID) (Roche Diagnostics Ltd., UK).
Reverse fusion primers included the GS FLX Titanium
primer B and the library key (5’-CCTATCCCCTGTGT
GCCTTGGCAGTCTCAG). Amplification was performed
with FastStart HiFi Polymerase (Roche Diagnostics Ltd.,
UK) using the following cycling conditions: 94 °C for 3
min; 25 cycles of 94 °C for 30 s, 55 °C for 45 s, 72 °C for 1
min; followed by 72 °C for 8min. Amplicons were purified
using Ampure XP magnetic beads (Beckman Coulter) and
the concentration of each sample was measured using the
fluorescence-based Picogreen assay (Invitrogen). Concen-
trations were normalized before pooling samples in
batches of up to 16, each of which would be subsequently
identified by its unique MID. Pooled samples were then
subjected to unidirectional sequencing from the forward
primer on the 454 GS FLX Titanium platform according
to the manufacturer’s instructions (Roche Diagnostics).
The Ampliconnoise pipeline [57] was used to split the

dataset into separate files for each sample according to the
MID adaptors used, and then to remove pyrosequencing
errors, PCR errors and chimeric sequences. Only se-
quences over 400 bases in length were retained for further
analysis. The processed sequences were then classified
using the pick open reference OTUs process implemented
in QIIME v1.9.1 (Caporaso, et al. 2010) against the Green-
genes 16S rRNA gene database (http://greengenes.second-
genome.com/downloads/). The resulting distribution of
OTUs across the multiple samples was further analyzed
using QIIME v1.9.1. to summarize the distributions and
explore alpha and beta diversity [58].

Statistical analysis
For metabonomics analysis, after applying exponential
window with line broadening of 0.3 Hz and Fourier
transformation, spectra were individually phased and
base line corrected on the software MestReNova (Mes-
trelab Research v.8.1.2). Spectra were then imported in
Matlab (the Mathwork ® v2013a) where they were
calibrated on TSP (δ 0.00) for all tissue extract, lactate
(δ 1.33) for plasma and the H1 proton of α-glucose (δ
5.23) for liver biopsy. Spectra were normalized for each
matrix individually using a probabilistic quotient method
[59]. Metabolic variation between samples was evaluated
using principal component analysis (PCA). This step was
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also used to remove potential outliers that were consid-
ered as such if acquisition had failed to provide a
spectrum comparable to the other samples of the same
set. When group clusters of interest were spotted,
orthogonal projection to latent structure discriminant
analysis (O-PLS DA) was used to evaluate metabolic
variation between groups using NMR spectra as a matrix
of independent variables and infection or treatment as a
prediction vector. Algorithm for regression models were
provided by Korrigan Sciences Ltd.
The Wilcoxon test was used to evaluate significance in

variations between groups in regard to weigh and
α-diversity using R. A MANOVA test was also per-
formed to identify the impact of time, infection and
treatment on α-diversity on R (model <− aov(α-diversity
~ time*infection*treatment). Finally, due to sequencing
depth and method, we decided to pursue the microbial
community analysis at the family level and not at lower
taxonomical level. Statistical analyses were performed on
zero inflated log transformed relative abundance. A total
of 54 families were detected but only 40 were present in
at least 25% of the samples. Βeta diversity at the family
level was performed by calculating the Euclidian distance
between individual.

Additional files

Additional file 1: Infection modifies GM metabolic activity and
polysaccharide intestinal lumen content. (A) OPLS-DA scores against
cross-validated scores calculated using faecal water spectra of group A
and B at PM2 and infection as a predictor. (B) Loading plot associated to
the OPLS-DA model described in A. (EPS 14763 kb)

Additional file 2: Plasma level of betaine at PM2 for all groups, A:
control, B: Infected, C: infected and treated (62 ppm), D: infected and
treated (125 ppm), E: infected and treated (250 ppm).
* pv < 0.05; ** pv < 0.01. (EPS 614 kb)

Additional file 3: Glucose plasma level at PM2 for all groups, A: control,
B: Infected, C: infected and treated (62 ppm), D: infected and treated
(125 ppm), E: infected and treated (250 ppm). * pv < 0.05;
** pv < 0.01. (EPS 601 kb)

Additional file 4: Linear plasma response to Tiamulin treatment dose.
(A) Plot of the scores against the cross-validated scores of the O-PLS re-
gression model calculated using 1H-NMR spectra of birds at PM2 as a
matrix of independent variables and Tiamulin doses as a predictor. Model
parameters: R2Y = 0.48, Q2Y = 0.43 and p-value = 0.01 (EPS 13970 kb)

Additional file 5: Relative abundance in percentage of the Spirochaetes
OTU for each treatment group along the study. (EPS 948 kb)

Additional file 6: Loadings associated to the PCA scores plot in Fig. 5
calculating using the relative abundance of OTUs for all samples as a
matrix of independent variable. A, loadings of PC1. B, Loadings of PC2.
(EPS 2121 kb)

Additional file 7: Table S7. OTU raw read counts table. (CSV 3322 kb)

Additional file 8: Table S8. Sample key and metadata for Additional file
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