220 research outputs found

    An engaged research study to assess the effect of a 'real-world' dietary intervention on urinary bisphenol A (BPA) levels in teenagers.

    Get PDF
    Bisphenol A (BPA) has been associated with adverse human health outcomes and exposure to this compound is near-ubiquitous in the Western world. We aimed to examine whether self-moderation of BPA exposure is possible by altering diet in a real-world setting

    Protein network analysis reveals selectively vulnerable regions and biological processes in FTD

    Get PDF
    Objective: The neuroanatomical profile of behavioral variant frontotemporal dementia (bvFTD) suggests a common biological etiology of disease despite disparate pathologic causes; we investigated the genetic underpinnings of this selective regional vulnerability to identify new risk factors for bvFTD. Methods: We used recently developed analytical techniques designed to address the limitations of genome-wide association studies to generate a protein interaction network of 63 bvFTD risk genes. We characterized this network using gene expression data from healthy and diseased human brain tissue, evaluating regional network expression patterns across the lifespan as well as the cell types and biological processes most affected in bvFTD. Results: We found that bvFTD network genes show enriched expression across the human lifespan in vulnerable neuronal populations, are implicated in cell signaling, cell cycle, immune function, and development, and are differentially expressed in pathologically confirmed frontotemporal lobar degeneration cases. Five of the genes highlighted by our differential expression analyses, BAIAP2, ERBB3, POU2F2, SMARCA2, and CDC37, appear to be novel bvFTD risk loci. Conclusions: Our findings suggest that the cumulative burden of common genetic variation in an interacting protein network expressed in specific brain regions across the lifespan may influence susceptibility to bvFTD

    Genetic variation across RNA metabolism and cell death gene networks is implicated in the semantic variant of primary progressive aphasia

    Get PDF
    The semantic variant of primary progressive aphasia (svPPA) is a clinical syndrome characterized by neurodegeneration and progressive loss of semantic knowledge. Unlike many other forms of frontotemporal lobar degeneration (FTLD), svPPA has a highly consistent underlying pathology composed of TDP-43 (a regulator of RNA and DNA transcription metabolism). Previous genetic studies of svPPA are limited by small sample sizes and a paucity of common risk variants. Despite this, svPPA's relatively homogenous clinicopathologic phenotype makes it an ideal investigative model to examine genetic processes that may drive neurodegenerative disease. In this study, we used GWAS metadata, tissue samples from pathologically confirmed frontotemporal lobar degeneration, and in silico techniques to identify and characterize protein interaction networks associated with svPPA risk. We identified 64 svPPA risk genes that interact at the protein level. The protein pathways represented in this svPPA gene network are critical regulators of RNA metabolism and cell death, such as SMAD proteins and NOTCH1. Many of the genes in this network are involved in TDP-43 metabolism. Contrary to the conventional notion that svPPA is a clinical syndrome with few genetic risk factors, our analyses show that svPPA risk is complex and polygenic in nature. Risk for svPPA is likely driven by multiple common variants in genes interacting with TDP-43, along with cell death,x` working in combination to promote neurodegeneration

    Exome Sequencing and Genetic Testing for MODY

    Get PDF
    Context: Genetic testing for monogenic diabetes is important for patient care. Given the extensive genetic and clinical heterogeneity of diabetes, exome sequencing might provide additional diagnostic potential when standard Sanger sequencing-based diagnostics is inconclusive. Objective: The aim of the study was to examine the performance of exome sequencing for a molecular diagnosis of MODY in patients who have undergone conventional diagnostic sequencing of candidate genes with negative results. Research Design and Methods: We performed exome enrichment followed by high-throughput sequencing in nine patients with suspected MODY. They were Sanger sequencing-negative for mutations in the HNF1A, HNF4A, GCK, HNF1B and INS genes. We excluded common, non-coding and synonymous gene variants, and performed in-depth analysis on filtered sequence variants in a pre-defined set of 111 genes implicated in glucose metabolism. Results: On average, we obtained 45 X median coverage of the entire targeted exome and found 199 rare coding variants per individual. We identified 0–4 rare non-synonymous and nonsense variants per individual in our a priori list of 111 candidate genes. Three of the variants were considered pathogenic (in ABCC8, HNF4A and PPARG, respectively), thus exome sequencing led to a genetic diagnosis in at least three of the nine patients. Approximately 91% of known heterozygous SNPs in the target exomes were detected, but we also found low coverage in some key diabetes genes using our current exome sequencing approach. Novel variants in the genes ARAP1, GLIS3, MADD, NOTCH2 and WFS1 need further investigation to reveal their possible role in diabetes. Conclusion: Our results demonstrate that exome sequencing can improve molecular diagnostics of MODY when used as a complement to Sanger sequencing. However, improvements will be needed, especially concerning coverage, before the full potential of exome sequencing can be realized

    Dectin-1: a role in antifungal defense and consequences of genetic polymorphisms in humans

    Get PDF
    The clinical relevance of fungal infections has increased dramatically in recent decades as a consequence of the rise of immunocompromised populations, and efforts to understand the underlying mechanisms of protective immunity have attracted renewed interest. Here we review Dectin-1, a pattern recognition receptor involved in antifungal immunity, and discuss recent discoveries of polymorphisms in the gene encoding this receptor which result in human disease

    Microbial Co-occurrence Relationships in the Human Microbiome

    Get PDF
    The healthy microbiota show remarkable variability within and among individuals. In addition to external exposures, ecological relationships (both oppositional and symbiotic) between microbial inhabitants are important contributors to this variation. It is thus of interest to assess what relationships might exist among microbes and determine their underlying reasons. The initial Human Microbiome Project (HMP) cohort, comprising 239 individuals and 18 different microbial habitats, provides an unprecedented resource to detect, catalog, and analyze such relationships. Here, we applied an ensemble method based on multiple similarity measures in combination with generalized boosted linear models (GBLMs) to taxonomic marker (16S rRNA gene) profiles of this cohort, resulting in a global network of 3,005 significant co-occurrence and co-exclusion relationships between 197 clades occurring throughout the human microbiome. This network revealed strong niche specialization, with most microbial associations occurring within body sites and a number of accompanying inter-body site relationships. Microbial communities within the oropharynx grouped into three distinct habitats, which themselves showed no direct influence on the composition of the gut microbiota. Conversely, niches such as the vagina demonstrated little to no decomposition into region-specific interactions. Diverse mechanisms underlay individual interactions, with some such as the co-exclusion of Porphyromonaceae family members and Streptococcus in the subgingival plaque supported by known biochemical dependencies. These differences varied among broad phylogenetic groups as well, with the Bacilli and Fusobacteria, for example, both enriched for exclusion of taxa from other clades. Comparing phylogenetic versus functional similarities among bacteria, we show that dominant commensal taxa (such as Prevotellaceae and Bacteroides in the gut) often compete, while potential pathogens (e.g. Treponema and Prevotella in the dental plaque) are more likely to co-occur in complementary niches. This approach thus serves to open new opportunities for future targeted mechanistic studies of the microbial ecology of the human microbiome.National Institutes of Health (U.S.) (grant CA139193)Fonds Wetenschappelijk Onderzoek – VlaanderenJuvenile Diabetes Research Foundation InternationalNational Institutes of Health (U.S.) (grant NIH U54HG004969)Crohn's and Colitis Foundation of AmericaNational Science Foundation (U.S.) (NSF DBI-1053486)United States. Army Research Office (ARO W911NF-11-1-0473)National Institutes of Health (U.S.) (grant NIH 1R01HG005969

    Drugs and herbs given to prevent hepatotoxicity of tuberculosis therapy: systematic review of ingredients and evaluation studies

    Get PDF
    Background: Drugs to protect the liver are frequently prescribed in some countries as part of treatment for tuberculosis. The biological rationale is not clear, they are expensive and may do harm. We conducted a systematic review to a) describe the ingredients of "liver protection drugs"; and b) compare the evidence base for the policy against international standards. Methods: We searched international medical databases (MEDLINE, EMBASE, LILACS, CINAHL, Cochrane Central Register of Controlled Trials, and the specialised register of the Cochrane Infectious Diseases Group) and Chinese language databases (CNKI, VIP and WanFang) to April 2007. Our inclusion criteria were research papers that reported evaluating any liver protection drug or drugs for preventing liver damage in people taking anti-tuberculosis treatment. Two authors independently categorised and extracted data, and appraised the stated methods of evaluating their effectiveness. Results: Eighty five research articles met our inclusion criteria, carried out in China (77), India (2), Russia (4), Ukraine (2). These articles evaluated 30 distinct types of liver protection compounds categorised as herbal preparations, manufactured herbal products, combinations of vitamins and other non-herbal substances and manufactured pharmaceutical preparations. Critical appraisal of these articles showed that all were small, poorly conducted studies, measuring intermediate outcomes. Four trials that were described as randomised controlled trials were small, had short follow up, and did not meet international standards. Conclusion: There is no reliable evidence to support prescription of drugs or herbs to prevent liver damage in people on tuberculosis treatment

    The rice NLR pair Pikp-1/Pikp-2 initiates cell death through receptor cooperation rather than negative regulation

    Get PDF
    Plant NLR immune receptors are multidomain proteins that can function as specialized sensor/helper pairs. Paired NLR immune receptors are generally thought to function via negative regulation, where one NLR represses the activity of the second and detection of pathogen effectors relieves this repression to initiate immunity. However, whether this mechanism is common to all NLR pairs is not known. Here, we show that the rice NLR pair Pikp-1/Pikp-2, which confers resistance to strains of the blast pathogen Magnaporthe oryzae (syn. Pyricularia oryzae) expressing the AVR-PikD effector, functions via receptor cooperation, with effector-triggered activation requiring both NLRs to trigger the immune response. To investigate the mechanism of Pikp-1/Pikp-2 activation, we expressed truncated variants of these proteins, and made mutations in previously identified NLR sequence motifs. We found that any domain truncation, in either Pikp-1 or Pikp-2, prevented cell death in the presence of AVR-PikD, revealing that all domains are required for activity. Further, expression of individual Pikp-1 or Pikp-2 domains did not result in cell death. Mutations in the conserved P-loop and MHD sequence motifs in both Pikp-1 and Pikp-2 prevented cell death activation, demonstrating that these motifs are required for the function of the two partner NLRs. Finally, we showed that Pikp-1 and Pikp-2 associate to form homo- and hetero-complexes in planta in the absence of AVR-PikD; on co-expression the effector binds to Pikp-1 generating a tri-partite complex. Taken together, we provide evidence that Pikp-1 and Pikp-2 form a fine-tuned system that is activated by AVR-PikD via receptor cooperation rather than negative regulation
    corecore