424 research outputs found

    Rapid surrogate testing of wavelet coherences

    Get PDF
    Background. The use of wavelet coherence methods enables the identification of frequency-dependent relationships between the phases of the fluctuations found in complex systems such as medical and other biological timeseries. These relationships may illuminate the causal mechanisms that relate the variables under investigation. However, computationally intensive statistical testing is required to ensure that apparent phase relationships are statistically significant, taking into account the tendency for spurious phase relationships to manifest in short stretches of data. Methods. In this study we revisit Fourier transform based methods for generating surrogate data, with which we sample the distribution of coherence values associated with the null hypothesis that no actual phase relationship between the variables exists. The properties of this distribution depend on the cross-spectrum of the data. By describing the dependency, we demonstrate how large numbers of values from this distribution can be rapidly generated without the need to generate correspondingly many wavelet transforms. Results. As a demonstration of the technique, we apply the efficient testing methodology to a complex biological system consisting of population timeseries for planktonic organisms in a food web, and certain environmental drivers. A large number of frequency dependent phase relationships are found between these variables, and our algorithm efficiently determines the probability of each arising under the null hypothesis, given the length and properties of the data. Conclusion. Proper accounting of how bias and wavelet coherence values arise from cross spectral properties provides a better understanding of the expected results under the null hypothesis. Our new technique enables enormously faster significance testing of wavelet coherence

    Climate-change related regime shifts have altered spatial synchrony of plankton dynamics in the North Sea

    Get PDF
    During the 1980s the North Sea plankton community underwent a well-documented ecosystem regime shift, including both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of warmer-water species). This regime shift has been attributed to climate change. Plankton provide a link between climate and higher-trophic-level organisms, which can forage on large spatial and temporal scales. It is therefore important to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics, but also whether it affects spatio-temporal aspects such as metapopulation synchrony. If plankton synchrony is altered, higher-trophic-level feeding patterns may be modified. A second motivation for investigating changes in synchrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that synchrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral analysis to investigate whether synchrony changed between the periods 1959-1980 and 1989-2010. Twenty-three plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony in SST and plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance. Changes in the synchrony of Calanus helgolandicus and Para-pseudocalanus spp appeared to be driven by changes in SST synchrony. This study is one of few to document alterations of synchrony and climate-change impacts on synchrony. We discuss why climate-change impacts on synchrony may well be more common and consequential than previously recognized

    Synchrony affects Taylor’s law in theory and data

    Get PDF
    Two widely confirmed patterns in ecology are Taylor’s law (TL), which states that the variance of population density is approximately a power of mean population density, and population synchrony, the tendency of species’ population sizes in different areas to be correlated through time. TL has been applied in many areas, including fisheries management, conservation, agriculture, finance, physics, and meteorology. Synchrony of populations increases the likelihood of large-scale pest or disease outbreaks and shortages of resources. We show that changed synchrony modifies and can invalidate TL. Widespread recent changes in synchrony, possibly resulting from climate change, may broadly affect TL and its applications

    Synchrony is more than its top-down and climatic parts: interacting Moran effects on phytoplankton in British seas

    Get PDF
    Large-scale spatial synchrony is ubiquitous in ecology. We examined 56 years of data representing chlorophyll density in 26 areas in British seas monitored by the Continuous Plankton Recorder survey. We used wavelet methods to disaggregate synchronous fluctuations by timescale and determine that drivers of synchrony include both biotic and abiotic variables. We tested these drivers for statistical significance by comparison with spatially synchronous surrogate data. We generated timescale-specific models, accounting for 61% of long-timescale (> 4yrs) synchrony in a chlorophyll density index, but only 3% of observed short-timescale (< 4yrs) synchrony. The dominant source of long-timescale chlorophyll synchrony was closely related to sea surface temperature, through a Moran effect, though likely via complex oceanographic mechanisms. The top-down action of Calanus finmarchicus predation enhances this environmental synchronising mechanism and interacts with it non-additively to produce more long-timescale synchrony than top-down and climatic drivers would produce independently. Thus we demonstrate interaction effects between Moran drivers of synchrony, a new mechanism for synchrony that may affect many ecosystems at large spatial scales

    A new approach to interspecific synchrony in population ecology using tail association

    Get PDF
    AbstractStandard methods for studying the association between two ecologically important variables provide only a small slice of the information content of the association, but statistical approaches are available that provide comprehensive information. In particular, available approaches can reveal tail associations, that is, accentuated or reduced associations between the more extreme values of variables. We here study the nature and causes of tail associations between phenological or population‐density variables of co‐located species, and their ecological importance. We employ a simple method of measuring tail associations which we call the partial Spearman correlation. Using multidecadal, multi‐species spatiotemporal datasets on aphid first flights and marine phytoplankton population densities, we assess the potential for tail association to illuminate two major topics of study in community ecology: the stability or instability of aggregate community measures such as total community biomass and its relationship with the synchronous or compensatory dynamics of the community's constituent species; and the potential for fluctuations and trends in species phenology to result in trophic mismatches. We find that positively associated fluctuations in the population densities of co‐located species commonly show asymmetric tail associations; that is, it is common for two species’ densities to be more correlated when large than when small, or vice versa. Ordinary measures of association such as correlation do not take this asymmetry into account. Likewise, positively associated fluctuations in the phenology of co‐located species also commonly show asymmetric tail associations. We provide evidence that tail associations between two or more species’ population‐density or phenology time series can be inherited from mutual tail associations of these quantities with an environmental driver. We argue that our understanding of community dynamics and stability, and of phenologies of interacting species, can be meaningfully improved in future work by taking into account tail associations.</jats:p

    Accreting Black Holes

    Full text link
    This chapter provides a general overview of the theory and observations of black holes in the Universe and on their interpretation. We briefly review the black hole classes, accretion disk models, spectral state classification, the AGN classification, and the leading techniques for measuring black hole spins. We also introduce quasi-periodic oscillations, the shadow of black holes, and the observations and the theoretical models of jets.Comment: 41 pages, 18 figures. To appear in "Tutorial Guide to X-ray and Gamma-ray Astronomy: Data Reduction and Analysis" (Ed. C. Bambi, Springer Singapore, 2020). v3: fixed some typos and updated some parts. arXiv admin note: substantial text overlap with arXiv:1711.1025

    Increased Local Retention of Reef Coral Larvae as a Result of Ocean Warming

    Get PDF
    Climate change will alter many aspects of the ecology of organisms, including dispersal patterns and population connectivity. Understanding these changes is essential to predict future species distributions, estimate potential for adaptation, and design effective networks of protected areas. In marine environments, dispersal is often accomplished by larvae. At higher temperatures, larvae develop faster, but suffer higher mortality, making the effect of temperature on dispersal difficult to predict. Here, we experimentally calibrate the effect of temperature on larval survival and settlement in a dynamic model of coral dispersal. Our findings imply that most reefs globally will experience several-fold increases in local retention of larvae due to ocean warming. This increase will be particularly pronounced for reefs with mean water residence times comparable to the time required for species to become competent to settle. Higher local retention rates strengthen the link between abundance and recruitment at the reef scale, suggesting that populations will be more responsive to local conservation actions. Higher rates of local retention and mortality will weaken connectivity between populations, and thus potentially retard recovery following severe disturbances that substantially deplete local populations. Conversely, on isolated reefs that are dependent on replenishment from local broodstock, increases in local retention may hasten recovery

    Burnout and use of HIV services among health care workers in Lusaka District, Zambia: a cross-sectional study

    Get PDF
    BACKGROUND: Well-documented shortages of health care workers in sub-Saharan Africa are exacerbated by the increased human resource demands of rapidly expanding HIV care and treatment programmes. The successful continuation of existing programmes is threatened by health care worker burnout and HIV-related illness. METHODS: From March to June 2007, we studied occupational burnout and utilization of HIV services among health providers in the Lusaka public health sector. Providers from 13 public clinics were given a 36-item, self-administered questionnaire and invited for focus group discussions and key-informant interviews. RESULTS: Some 483 active clinical staff completed the questionnaire (84% response rate), 50 staff participated in six focus groups, and four individuals gave interviews. Focus group participants described burnout as feeling overworked, stressed and tired. In the survey, 51% reported occupational burnout. Risk factors were having another job (RR 1.4 95% CI 1.2-1.6) and knowing a co-worker who left in the last year (RR 1.6 95% CI 1.3-2.2). Reasons for co-worker attrition included: better pay (40%), feeling overworked or stressed (21%), moving away (16%), death (8%) and illness (5%). When asked about HIV testing, 370 of 456 (81%) reported having tested; 240 (50%) tested in the last year. In contrast, discussion groups perceived low testing rates. Both discussion groups and survey respondents identified confidentiality as the prime reason for not undergoing HIV testing. CONCLUSION: In Lusaka primary care clinics, overwork, illness and death were common reasons for attrition. Programmes to improve access, acceptability and confidentiality of health care services for clinical providers and to reduce workplace stress could substantially affect workforce stability
    corecore