
RESEARCH ARTICLE

Synchrony is more than its top-down and

climatic parts: interacting Moran effects on

phytoplankton in British seas

Lawrence W. SheppardID
1*, Emma J. Defriez2, Philip C. ReidID

3,4, Daniel C. Reuman5,6*

1 Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas,

Lawrence, Kansas, USA, 2 Department of Life Sciences, Imperial College London, Ascot, United Kingdom,

3 Marine Institute, Plymouth University, Drake Circus, Plymouth, United Kingdom, 4 Marine Biological

Association of the UK, The Laboratory, Citadel Hill, Plymouth, United Kingdom, 5 Department of Ecology and

Evolutionary Biology and Kansas Biological Survey, University of Kansas, Lawrence, Kansas, USA,

6 Laboratory of Populations, Rockefeller University, New York, New York, USA

* lwsheppard@ku.edu (LWS); reuman@ku.edu (DCR)

Abstract

Large-scale spatial synchrony is ubiquitous in ecology. We examined 56 years of data rep-

resenting chlorophyll density in 26 areas in British seas monitored by the Continuous Plank-

ton Recorder survey. We used wavelet methods to disaggregate synchronous fluctuations

by timescale and determine that drivers of synchrony include both biotic and abiotic vari-

ables. We tested these drivers for statistical significance by comparison with spatially syn-

chronous surrogate data. Identification of causes of synchrony is distinct from, and goes

beyond, determining drivers of local population dynamics. We generated timescale-specific

models, accounting for 61% of long-timescale (> 4yrs) synchrony in a chlorophyll density

index, but only 3% of observed short-timescale (< 4yrs) synchrony. Thus synchrony and

its causes are timescale-specific. The dominant source of long-timescale chlorophyll syn-

chrony was closely related to sea surface temperature, through a climatic Moran effect,

though likely via complex oceanographic mechanisms. The top-down action of Calanus fin-

marchicus predation enhances this environmental synchronising mechanism and interacts

with it non-additively to produce more long-timescale synchrony than top-down and climatic

drivers would produce independently. Our principal result is therefore a demonstration of

interaction effects between Moran drivers of synchrony, a new mechanism for synchrony

that may influence many ecosystems at large spatial scales.

Author summary

The size of the annual bloom in phytoplankton can vary similarly from year to year in

different parts of the same oceanic region, a phenomenon called spatial synchrony. The

growth of phytoplankton near the ocean surface is the foundation of marine food webs,

which include numerous commercially exploited species. And spatial synchrony in

phytoplankton abundance time series can have consequences for the total production of

marine ecosystems. Therefore we studied the spatial synchrony of fluctuations in green
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phytoplankton abundance in 26 areas in seas around the British Isles. Variation and syn-

chrony can occur differently on long and short timescales. We used a novel wavelet-based

approach to examine long- and short-timescale fluctuations separately, and we thereby

show that slow synchronous fluctuations in phytoplankton can be explained by the effects

of slow synchronous fluctuations in sea surface temperature and related oceanographic

phenomena, and by the effects of synchronous fluctuations in a zooplankton predator.

Crucially, these drivers reinforce one another in a super-additive way, the interaction con-

stituting a new mechanism of synchrony. Future changes in the climate or changes in pre-

dation are likely to influence phytoplankton synchrony via this mechanism and hence

may influence the aggregate productivity of British seas.

Introduction

Many ecosystems are subject to large spatially synchronous fluctuations, with serious conse-

quences for ecosystem services and stability across space and time. Spatial synchrony is the

tendency for spatially separated populations to undergo correlated fluctuations. Spatial syn-

chrony is a fundamental and nearly ubiquitous feature of ecological population dynamics, hav-

ing been observed in thousands of species from a wide variety of taxa [1].

It is well known that spatially synchronous fluctuations in population abundance can result

from spatially synchronous fluctuations in the environment; this is called the Moran effect [2].

For example correlated fluctuations in the abundances of spatially separated coral reef fish

populations were found to be related to spatially extensive climatic fluctuations related to the

ENSO index [3]. A major challenge has been to identify the environmental drivers acting in

real systems and thereby to demonstrate the Moran effect in action [4, 5]. Cases in which indi-

vidual environmental drivers such as precipitation or temperature fluctuations have been sta-

tistically identified as Moran-type synchronizers are emerging [6, 7]. Steen et al. suggest the

Moran effect is generally more important than dispersal as a factor synchronizing population

fluctuations [8].

But synchronizing mechanisms can be complex. Defriez et al. identify multiple potential

environmental drivers of synchrony in terrestrial vegetation growth [9], specifically tempera-

ture and precipitation. Multiple Moran drivers may, in principle, show interaction effects.

Kendall et al. suggested theoretically that dispersal and Moran effects do not combine in

a merely additive way [10], i.e., population synchrony in their models differed from what

would be expected by simply adding the synchronizing effects of dispersal and environmental

correlation. Even considering only Moran effects, in addition to synchronous environmental

forcing (here referred to as a ‘climatic’ driver of synchrony, or as a ‘climatic’ Moran effect),

populations may also be subject to biotic factors such as spatially synchronous predation

(here considered a ‘top-down’ driver of synchrony, included for our purposes under the term

‘Moran effect’). Spatial synchrony in a given species may thus be the result of a complex of

interacting factors.

To illustrate the theoretical potential for interaction effects between Moran drivers, con-

sider the simple case of a population index γ(n, t) following an autoregressive (AR1) process

in locations n = 1, 2 at times t. By the Moran theorem [2] the correlation of the population

between the two locations is the correlation of the environmental drivers, which is equal to

their covariance normalized by the geometric mean of their variances. The Moran theorem is

a statement about correlations of stochastic processes. These correlations can be estimated

from simulations or sampled data, but sampling error and transients make such estimation

Interacting Moran effects in the North Sea
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inexact for short time series. Real ecological data does not, in general, arise from autoregressive

processes with only one driver. Moran’s original formulation includes only a single spatially

synchronous driver, but a model including a second driver makes clear the importance of any

relationship between the drivers to the resultant ecological synchrony. If the environmental

drivers are each a weighted sum of variables α(n, t) and β(n, t), then the numerator and

denominator of their correlation now depend not only on covariances between locations of α,

and likewise for β, but also on covariances (interactions) between these drivers. See Appendix

S1 of Supporting Information for mathematical working.

The planktonic ecosystem is the foundation of the oceanic food web and of commercial

fisheries. And it is also an exemplar of a complex ecological network within which any species

may, in principle, be subject to numerous synchronizing influences which may interact as

indicated above. Several factors affect phytoplankton growth, including CO2, temperature, and

pH [11]; each of these has the potential to promote synchrony via a Moran effect. Zooplankton

predation and a suite of interrelated oceanographic phenomena are also of well known impor-

tance [12]. Sea surface temperature relates to water column mixing and critical-layer depth via

complex mechanisms that can drive phytoplankton synchrony [13–15]. Plankton growth is

highly ‘patchy’ [16], but, nevertheless, at a regional scale plankton communities show coherent

and persistent patterns of change through time [17–19]. The examination of variability on

long spatial and temporal scales may illuminate causes of plankton synchrony and patches.

Plankton make an excellent system in which to investigate the possible importance of multiple

and possibly interacting Moran drivers.

In this paper we examine annualized plankton abundance data in the sea around the British

Isles, drawn from the Continuous Plankton Recorder (CPR) survey of the Marine Biological

Association (MBA) of the United Kingdom, in order to understand the possibly complex influ-

ences acting to spatially synchronize phytoplankton abundance. Until recently, the CPR survey

was run by the Sir Alister Hardy Foundation for Ocean Science, SAHFOS. The CPR data

includes a Phytoplankton Color Index (PCI) which undergoes spatially correlated fluctuations

[20], and which we analyse. Raitsos et al. [21] have calibrated this index with chlorophyll fluo-

rescence and show [22] that it correlates well with satellite measures of ocean color. The PCI

is a good indicator of the presence of chlorophyll and primary production in the North Sea

[23, 24].

Phytoplankton abundance undergoes fluctuations with varying timescales at different

times, complicating the identification of Moran effects and interactions between Moran effects;

this is a general feature of spatiotemporal ecological data. Monthly time series were compiled

but ‘missing months’ when no data were available required filling with median values for

each site and month (Methods). The monthly data were dominated by the seasonal phyto-

plankton bloom and seasonal changes in all the covariates, with a fixed one-year period. Sea-

sonal plankton dynamics have been well studied. Our examination of annualized data instead

gives information about the aggregate effect of drivers on fluctuations in the bloom size from

year to year, allowing us to identify coherent inter-year fluctuations with statistical confidence.

Sheppard et al. show that synchrony in aphid populations across the United Kingdom (UK)

changed substantially from before to after about 1993, shifting from long-timescale-dominated

to short-timescale-dominated synchrony in response to a shift in the North Atlantic Oscilla-

tion [7]. Via an approach that resolved patterns on different timescales, Defriez et al. showed

the synchrony of fluctuating plankton populations in the North Sea changed significantly from

before the 1980s to after the 1980s [20]. A regime shift in the abundances of various plankton

species occurred in the 1980s [25–27] including an overall increase in the PCI and a reduction

in C. finmarchicus abundance. Research continues to emerge showing the importance of the

timescale structure of population dynamics to understanding synchrony [7, 9, 15, 20, 28–30].

Interacting Moran effects in the North Sea
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Another complicating factor for identifying Moran drivers for plankton is the likelihood of

relationships other than strict proportionality between fluctuations in a driver variable and the

fluctuations induced in plankton growth, including possibly time-lagged relationships. Lieb-

hold et al. suggest phase-coherence-based techniques as a way of identifying relationships with

a delay or phase shift [1]. Pioneering work by Colebrook [31] using Fourier techniques dem-

onstrates a ‘phase-shifted’ relationship between the fluctuations of North Sea plankton abun-

dance and sea surface temperature.

We earlier demonstrated [7] how wavelet techniques were effective in accounting for the

synchrony of aphid fluctuations, in spite of complexities of biological systems such as those

listed above. We here build on our earlier timescale- and phase-sensitive wavelet methods and

apply the improved methods to fluctuations in phytoplankton abundance. Among the wavelet

approaches in our earlier work, we developed a wavelet version of the classic Moran theorem

that made it possible to quantify the proportion of observed synchrony attributable to a given

Moran driver at a given timescale. We also developed an approach based on examining the

statistics of spatially synchronous artificial time series (surrogate data) to demonstrate that

observed wavelet relationships between empirical data represented statistically significant asso-

ciations. The wavelet transform (see [32] for general background) of a plankton abundance

time series x(t) (t = 1, . . ., T) is a complex number Wσ(t) with magnitude and phase that give,

respectively, the strength and phase of the oscillations in x(t) of timescale/period σ at time t.
The frequency of a periodic fluctuation is henceforth identified as the reciprocal of its time-

scale, σ.

Because of the complexity of the plankton system, understanding phytoplankton synchrony

requires the development of statistical wavelet models incorporating the effects of more than

one driver, and exploration of the effects on the synchrony expected when these drivers either

reinforce or counteract one another. We apply a timescale specific fitting procedure to repre-

sent the fluctuations of the plankton in terms of K drivers,

wðphytoplanktonÞ
s

ðtÞ � b1ðsÞwðdriver 1Þ
s

ðtÞ þ � � � þ bKðsÞwðdriver KÞ
s

ðtÞ; ð1Þ

where the wσ(t) are normalizations (rescalings by a constant) of the wavelet transforms, Wσ(t)
(details below). The use of complex β(σ) coefficients allows for lagged effects (phase shifts) of

drivers on phytoplankton, as well as variable strengths of effects depending on the timescale of

fluctuation. For example, a negative correlation between PCI and C. finmarchicus consumers

is described by Beaugrand et al. [33]: this is equivalent to a half-cycle phase shift.

Our specific research goals are: 1) to determine which physical and ecological variables

are associated with PCI fluctuations at long and short timescales and therefore probably help

cause synchrony in PCI through Moran effects; 2) to determine how much of the synchrony

observed at long and short timescales in PCI can be explained statistically by the collective

influence of these factors; 3) to explore possible interaction effects among the distinct Moran

influences, i.e., to explore whether the factors significantly reinforce or counteract each other

(in a non-additive manner) in causing PCI synchrony. If detected, interaction effects among

Moran drivers would be a newly recognized mechanism of synchrony. We emphasize that our

primary goal here is to understand the causes of spatial synchrony in the PCI, which is distinct

from explaining local dynamics of the PCI, a previously much investigated topic. To accom-

plish our goals, we have developed new wavelet methods that may be widely applicable. Since

some of the factors we consider are environmental and some comprise the influence of herbiv-

orous zooplankton, our explorations constitute an examination of ‘top-down’ and ‘climatic’

Moran effects, and possible interactions between these effects.

Interacting Moran effects in the North Sea
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Results

Theoretical illustration that enhanced synchrony can result from

reinforcement between Moran drivers

We constructed a numerical example including frequency-specific synchrony arising from

multiple drivers, as a conceptual illustration and for use in verifying the effectiveness of statisti-

cal methods to be used on data. The example is described below. By construction, the example

includes two drivers of synchrony that can either reinforce or counteract one another in the

same way as the drivers of PCI synchrony identified below. Thus the example also serves a ped-

agogical purpose by introducing, in simplified form, the kinds of relationships we later show

to hold for plankton in British seas. The example makes use of phase-shifted relationships

between variables and timescale-specific synchrony, and shows explicitly how interaction

effects can increase or decrease synchrony. The approach also illustrates the use of the wavelet

tools we apply to empirical data. Our example is demonstrated principally through Fig 1. By

way of overview, Fig 1a, 1b and 1c show an artificial spatiotemporal ‘driver’, a wavelet measure

of its synchrony, and the resulting synchrony of a ‘driven’ variable, respectively (details below).

Fig 1d, 1e and 1f show a different driver, its synchrony, and the resulting synchrony of a sec-

ond driven variable, respectively. Fig 1g, 1h and 1i describe the synchrony of a third driven

variable that depends on both drivers.

For sampling locations indexed by n and sampling times indexed by t, define the (biotic or

abiotic) environmental random variable (Fig 1a) aðn; tÞ ¼
ffiffi
1

4

p
aSðn; tÞ þ

ffiffi
3

4

p
aLðn; tÞ, where

aSðn; tÞ ¼
ffiffiffi
2
p

sin ðwtÞ is the ‘synchronous component’ of α(n, t) and αL(n, t) is a ‘local noise’.

This and other local noise terms will be considered to be standard-normally distributed for all

n and t, and independent through time t, across space n, and of other local noises. We take

w = 2π/20, so the timescale of oscillations we consider in this example is 20 years. We use

n = 1, . . ., 26 and t = 0, . . ., 59 in this example because these values are similar to the analogous

values in the empirical data we study below. It is straightforward to show that
ffiffi
1

4

p
aS contributes

1/4 and
ffiffi
3

4

p
aL contributes 3/4 of the variance through time of α, so that the ‘combination ratio’

of the synchronous and local-noise components of α is 1:3. Likewise define the environmental

variable bðn; tÞ ¼
ffiffi
1

4

p
bSðn; tÞ þ

ffiffi
3

4

p
bLðn; tÞ (Fig 1d), where we set bSðn; tÞ ¼

ffiffiffi
2
p

cos ðwt � φpÞ
for φ a constant, and βL(n, t) is another local noise. Again, the combination ratio of the syn-

chronous and local-noise components is 1:3. We initially consider the case φ = 0, later relaxing

this assumption.

The wavelet mean field magnitude (WMFM; Methods) is a statistical technique that takes

spatiotemporal data such as α(n, t) and provides a plot that shows how much synchrony exists

between these time series for each time and timescale of analysis [7]. The WMFM approach

picks out the synchronized fluctuations in α (Fig 1b) and in β (Fig 1e) as bright features at

timescale 20 years spanning the duration of the time series, introducing the WMFM technique

by way of demonstration.

Three alternative population-dynamical variables γ(i)(n, t) for i = 1, 2, 3 are now con-

structed, each influenced by different combinations of α and β. Each variable α and β is

partially spatially synchronous, and can thus have a synchronizing effect on γ(i). We will

imagine α represents a top-down influence such as predation, and β represents a climatic

influence. Depending on the causal mechanism, the two signals α and βmay bear different

phase relationships to the fluctuations they produce in a population variable γ. For example a

low value of αmay tend to produce high values of γ, yielding a negative correlation and a π
phase difference between their fluctuations, whereas the effect of βmay be subject to a time

delay introducing a different phase shift. We define gðiÞðn; tÞ ¼
ffiffi
1

4

p
g
ðiÞ
S ðn; tÞ þ

ffiffi
3

4

p
g
ðiÞ
L ðn; tÞ,

Interacting Moran effects in the North Sea
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where the g
ðiÞ
L are local noise, g

ð1Þ

S ðn; tÞ ¼ � aðn; tÞ, g
ð2Þ

S ðn; tÞ ¼ � bðn; t � 5Þ, and

g
ð3Þ

S ðn; tÞ ¼ � ðaðn; tÞ þ bðn; t � 5ÞÞ=f , where f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 1

2
cos ðφpÞ

p
is chosen so that the

variance through time of g
ð3Þ

S ðn; tÞ is 1, the same as the variance through time of g
ð1Þ

S and g
ð2Þ

S

(Appendix S1). Thus in all three cases the partially synchronous components g
ðiÞ
S ðn; tÞ are

combined with the local noise components g
ðiÞ
L ðn; tÞ in combination ratio 1:3. The negative

Fig 1. Synthetic example showing the effects of two different synchronizing factors, individually and in interactive combination. Panel (a)

shows fluctuations in 26 signals α(n, t) with a synchronous 20-year-period sine wave component obscured by independent local noise. Panel (d)

shows 26 signals β(n, t) with a synchronous 20-year-period cosine component, also obscured by independent local noise of the same strength.

Panels (b) and (e), which are wavelet mean field magnitudes (WMFM; Methods) of (a) and (d), respectively, display synchrony as a function of time

and timescale and reveal synchrony at timescale 20 years. Panels (c) and (f) show WMFMs of populations influenced by α and β, respectively, and

also by independent local noise time series of the same strength. β acts with a 5-year lag, 1/4 of the underlying 20-year periodicity. Synchrony is still

visible, and is similar in strength, but is muted relative to (b) and (e) by the additional local noise acting on the populations. Panel (g) shows the

WMFM of populations subject to a mixed influence of α and β, normalized so this influence had the same variance through time as the influences α
and β had individually for panels (c) and (f). Independent local noise of the same strength was again applied. Synchrony is stronger in (g) than in (c)

and (f), demonstrating interaction effects of the synchronizing agents α and β. Panel (h) shows the time-averaged square of the WMFM of (g), in

green (called the mean squared WMFM or mean squared synchrony in Methods), which is greater than that of (c), in blue, or (f), in red. Panel (i)

shows how interaction effects are a result of the phase relationships between the drivers. As the phase of the co-sinusoids underlying β are modified

in further simulations, the interaction effect goes from positive to negative as the phase shift passes 0.5π. Significance contours on Fig.1b,c,e,f,g

represent wavelet phasor mean field magnitude (Methods; WPMFM) significance thresholds at the 0.1, 0.05, 0.01, and 0.001 levels, respectively for

the dot, dot-dash, dash and line contours. These significance thresholds are relative to a null hypothesis of no association between the phases of the

26 transforms. See text for mathematical details. WMFMs are not guaranteed to be� 1 at all times, but ours were except for (e), which had

maximum squared value 1.0111. For clearer plotting, we reassigned values> 1 in (e) to 1. Sync. = synchrony.

https://doi.org/10.1371/journal.pcbi.1006744.g001

Interacting Moran effects in the North Sea
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influence of α on γ(1) will produce a negative correlation between these variables. The 5-year

lag of the effects of β on γ(2) is a quarter of the 20-year cycle built into β (π/2 radians phase

difference). The γ(3) example models a combined influence of top-down (α) and climatic (β)

Moran effects, though the strength of the combined effect is kept equal to the strength of the

individual top-down and climatic effects acting, respectively, on γ(1) and γ(2) through α and

β. Thus effects can be fairly compared across our three population models.

WMFMs of the γ(i) reveal that synchrony is transmitted to all three population variables,

but that, for φ = 0, the synchrony in γ(3) was stronger than that in γ(1) and γ(2), revealing inter-

action effects between Moran drivers. The WMFMs of γ(1) (Fig 1c) and γ(2) (Fig 1f) show that

the influence of α and β, respectively, have synchronized these population variables at the

20-year timescale. Synchrony in the populations is less than in the driver variables, as expected

since the populations are also influenced by local noise. The WMFM of γ(3) (Fig 1g) also shows

synchrony at 20-year timescale, and this synchrony is stronger than that of γ(1) and γ(2). Time-

averaged squared WMFMs (Fig 1h) clarify the comparison of strengths of synchrony of the

γ(i). Because of the π/2 phase relationship between sine (in αS) and cosine (in βS) when φ = 0,

and the π/2-phase-lagged effects of β on γ(3), the synchronizing influences of α and β on γ(3)

reinforce one another. The asynchronous variations in α and β (local noise) tend to cancel out

when these drivers are combined, leaving their synchronous components to have relatively

larger influence.

We investigated interaction effects between Moran drivers further by considering φ 6¼ 0.

When φ 6¼ 0, the effects of αS and the lagged effects of βS on γ(3) no longer perfectly reinforce

each other. For φ increasing from 0 to 0.5, reinforcement is partial, and positive interaction

effects are seen; for φ increasing further from 0.5 to 1, negative interactions are seen (Fig 1i).

Fig 1i shows typical (average over 50 realisations) time-averaged squared mean field magni-

tude values for γ(i) at 20-year timescale for i = 1, 2, 3 in blue, red, and green, respectively. The

crossover threshold of φ = 0.5 between the green and red or blue lines on Fig 1i corresponds

to the fact that quarter-cycle-shifted sinusoids (π/2 phase shift) have correlation 0 with each

other.

PCI fluctuations and synchrony have both top-down and climatic causes

At long timescales (> 4 years), the best wavelet model of PCI according to our model selection

and testing procedure (Methods), which was based on wavelet regression and out-of-sample

cross validation, included two predictor variables: C. finmarchicus abundance and sea surface

temperature during the growing season. Models considered in the model selection procedure

were constructed using combinations of the predictors listed in Tables 1 and 2. Other high-

ranked models were similar, but not identical to the top model (S1 Table): all included C. fin-
marchicus and either growing season or annual average temperature; summer salinity and

autumn cloud cover were included as predictors in some models. For simplicity and because

all of the top-ranking models included C. finmarchicus and a temperature variable, and

because other variables were only included in some of the top-ranking models, subsequent

analyses focussed on the one top model. At short timescales (< 4 years) the best model

included C. finmarchicus abundance, decapod larvae abundance, and echinoderm larvae abun-

dance. Even the best model at short timescales performed poorly for our purpose of explaining

synchrony (see below), so other short-timescale models were not listed.

Two timescale bands (<4 years and >4 years), as opposed to more bands, were used for

simplicity and because wavelet methods have finite ability to resolve timescales of fluctuation

in finite time series. The practical distinction between short (<4 year) and long (>4 year)

timescale bands follows the same reasoning as [7]: considering lag-1 autocorrelation, a time

Interacting Moran effects in the North Sea
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series (or a spatially synchronous component thereof) dominated by >4-year components of

variability will demonstrate slow changes in the sense that successive years will typically be

positively correlated. If dominated by <4-year components, the correlation will be negative.

The 4-year timescale is the boundary between persistence and anti-persistence in the ecologi-

cal data.

Each of the variables included in the best models at short and long timescales, respectively,

were tested for statistically significant spatial coherence (Methods) with PCI when controlling

for other variables in the model. In other words, normalized predictor transforms wðkÞn;sðtÞ

Table 2. The names given to the environmental variables investigated. Each time series was constructed by averaging

monthly values over the relevant months, to produce one value per year per location.

Variable Months averaged

Yearly temperature 1 to 12

Spring temperature 3 to 5

Summer temperature 6 to 8

Autumn temperature 9 to 11

Growing season temperature 3 to 9

Yearly wind speed 1 to 12

Spring wind speed 3 to 5

Summer wind speed 6 to 8

Autumn wind speed 9 to 11

Growing season wind speed 3 to 9

Yearly salinity 1 to 12

Spring salinity 3 to 5

Summer salinity 6 to 8

Autumn salinity 9 to 11

Growing season salinity 3 to 9

Yearly cloud cover 1 to 12

Spring cloud cover 3 to 5

Summer cloud cover 6 to 8

Autumn cloud cover 9 to 11

Growing season cloud cover 3 to 9

https://doi.org/10.1371/journal.pcbi.1006744.t002

Table 1. The names of the plankton variables investigated. Each time series was constructed by averaging monthly

values over all twelve months, to produce one value per year per location.

Calanus I-IV

Para-Pseudocalanus spp.

Acartia spp. (unidentified)

Oithona spp.

Pseudocalanus elongatus adult

Temora longicornis
Centropages typicus
Calanus finmarchicus
Calanus helgolandicus

Metridia lucens
Echinoderm larvae

Decapoda larvae (total)

Euphausiacea (total)

https://doi.org/10.1371/journal.pcbi.1006744.t001
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included in a model were required to provide a significant improvement in model explanatory

power over the model with that predictor removed (Methods). For long-timescales, the p-

value associated with removing C. finmarchicus from the top-ranked model was 0.0023,

and the p-value associated with removing growing season temperature was 0.0019. For short

timescales, the p-values associated with separate removals of C. finmarchicus, decapod larvae,

and echinoderm larvae abundance, respectively, from the top-ranked model were 0.0034,

0.0361, and 0.0017. Our best models were also tested and validated in several additional ways

(Methods).

We extracted the phases of the βk coefficients in our best fit models to determine the lag

between the fluctuations in the kth predictor and the corresponding content in the PCI wavelet

transforms. See Methods for details and S1 Fig for a plot of phase differences. A quarter-cycle

phase shift existed between the long-timescale driver, temperature, and PCI, with high PCI val-

ues following low temperature values. Across the range of timescales in the long-timescale

band, the phase of PCI leads the phase of temperature with coefficient phases between 0.5 and

2.1 radians. C. finmarchicus was found to be in antiphase with PCI at all frequencies, indicating

an association between high C. finmarchicus abundance and low PCI. In the long-timescale

band, the phase of PCI leads the phase of C. finmarchicus with coefficient phases between 2.8

and 4.2 radians; and in the short-timescale band between 3.0 and 3.5 radians. The two other

short-timescale predictors, decapod larvae and echinoderm larvae, were in phase with the fluc-

tuations in PCI. In the short-timescale band, decapod larvae had coefficient phases between 0

and 0.4 radians, and echinoderm larvae had coefficient phases between -0.4 and 0 radians.

The drivers and their phase relationships to PCI at low frequencies correspond to those

illustrated in Fig 1. PCI maintains an antiphase relationship with C. finmarchicus abundance

just as γ(1) does with driver α, and a quarter cycle phase shift with the temperature variable just

as γ(2) does with driver β. We can consider C. finmarchicus a top-down driver of PCI fluctua-

tions, as the anti-phase relationship between the variables, which pertains even after including

temperature in the model, implies variation in PCI driven by predation (see Discussion for fur-

ther elaboration). As in Fig 1i, the resultant mean squared WMFM of PCI will depend on the

interaction between the effects of these drivers, whether further synchronizing or desynchro-

nizing, as investigated below.

Returning to short timescales, the in-phase relationships between PCI and echinoderm and

decapod larvae may reflect environmental or other influences that impact these variables in

similar ways. Reid and Beaugrand proposed that the larger phytoplankton production reflected

in the growth in the PCI index that followed the 1980s North Sea regime shift increased sedi-

mentation of planktonic detritus to the benthos leading to a cascade of ecological responses in

the pelagos and benthos [19]. Kirby et al. and Lindley et al. showed that decapods and echino-

derms responded to the climatic regime shift with a marked increase in abundance of both the

benthic adult stage and their planktonic larvae [34, 35].

Fractions of synchrony explained

Having just demonstrated a dual climatic and top-down Moran effect on PCI, we now explore

the proportion of PCI synchrony this effect can explain.

The WMFM plot for PCI (Fig 2a, colors) showed that synchrony (high WMFM) in PCI

occurred at different time points within the time series for different frequencies. The wavelet

phasor mean field magnitude plot (WPMFM; Methods) for PCI (S2 Fig; significance contours

from that figure are superimposed on the WMFM plot of Fig 2a) showed that synchrony was

significant for some times and timescales and not for others. Here the WMFM is being used to

display synchrony and the WPMFM is being used to test for significance of phase synchrony.

Interacting Moran effects in the North Sea
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Fig 2. Our best long-timescale model explained synchrony on long timescales, but our short-timescale model did

not explain synchrony on short timescales. The PCI squared WMFM plot (a, colors) showed that spatially

synchronous fluctuations in PCI occurred at different time points within the time series for different frequencies.

Contours indicate statistically significant phase synchrony (at the 0.1, 0.05, 0.01, and 0.001 levels, respectively for the

different contours) and are taken from the WPMFM plot (Methods; S2 Fig). Synchrony predicted (Methods) by the

Interacting Moran effects in the North Sea
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Significance testing only the phase associations highlights significantly synchronous features

in the transforms without requiring a particular null hypothesis about the site-specific variabil-

ity in the transforms (Methods). The significance contours of the WPMFM were constructed

and are interpretable in the same way as for the simulated time series in Fig 1. Synchrony is

especially apparent in the WMFM plot on long timescales, and in a feature in the mid 1980s. A

‘regime shift’ in the North Sea plankton community in the 1980s has been well documented

(e.g., [26, 36]), and is likely to be associated with this feature.

Our wavelet Moran theorem (Methods) led to model-predicted synchrony plots and frac-

tions of synchrony explained that showed that our best models explained PCI synchrony

effectively on long timescales, but poorly on short timescales. Model-predicted synchrony

plots have the same format as WMFM plots but represent the synchrony that would have

occurred if the only synchronizing agents were those predictor variables included in the

model (Methods; this is jPð0hÞ
s
jjrðhÞ

s
ðtÞj in the notation used there). The model-predicted syn-

chrony plot based on our best long-timescale model (Fig 2b, left of the white line) resembled

the PCI WMFM plot (Fig 2a) for long timescales. In particular, a feature in the model-pre-

dicted synchrony plot (Fig 2b) representing high synchrony on the longest timescales exam-

ined (> 20 years) corresponds to a similar peak in the observed PCI WMFM plot; note the

different color bars on the two panels when making this comparison. Synchrony is also high

on both plots at timescales of around 8 years in the 1980s. In contrast, the model-predicted

synchrony plot based on our best short-timescale model (Fig 2b, right of white line) bore

no resemblance to the PCI WMFM plot (Fig 2a) for short timescales. Correspondingly, the

mean squared WMFM or mean squared synchrony (Fig 2c, green line; this is the mean

through time of the square of Fig 2a) only moderately exceeded the mean squared value of

synchrony predicted by our best model on long timescales (Fig 2c, blue line; this is the mean

through time of the square of Fig 2b for long timescales), but greatly exceeded it on short

timescales (Fig 2c, red line). The fraction of long-timescale mean squared synchrony in PCI

explained by our best long-timescale model was 61.1%. The fraction for short-timescales was

only 3.1% (Methods). Thus growing season temperature and C. finmarchicus abundance

were probably the dominant Moran effects producing synchrony (high WMFM) in PCI on

long timescales (with temperature likely acting indirectly, see Discussion); and we have not

explained short-timescale synchrony.

The significant fit on short timescales of the model with predictors C. finmarchicus, echino-

derm, and decapod larvae abundances does not conflict with the result that the same model

explains very little of the synchrony in PCI abundance; the two results illustrate that explaining

dynamics and explaining synchrony are related but distinct concepts. The significant fit

reflects the fact that local associations between the drivers and PCI are greater, on short time-

scales, than would be expected by chance. But spatial synchrony can only result when there is a

strong association between drivers and PCI and, crucially, when the drivers themselves are

substantially synchronous. The small fraction of synchrony accounted for at high frequencies

indicates that most of the spatial synchrony at high frequencies results from factors other

than the drivers we were able to identify. See the material on our wavelet Moran theorem in

Methods for additional details.

best long-timescale wavelet model (b, left of white line) resembled real patterns of synchrony, but synchrony predicted

by the best short-timescale model (b, right of white line) did not. Mean squared WMFM (c, green line; Methods) was

moderately well approximated by the mean squared value of predicted synchrony for long timescales (c, blue line) but

not for short timescales (c, red line). Sync. = synchrony; pred. = predicted.

https://doi.org/10.1371/journal.pcbi.1006744.g002
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Synchrony is more than its top-down and climatic components

Having just shown that top-down and climatic Moran effects produced most of the synchrony

(mean squared WMFM) in PCI on long timescales, we now explore whether these effects

interacted.

Randomizations showed that interactions between the Moran effects of growing season

temperature and C. finmarchicus were significant and substantial in their influence on

long-timescale PCI synchrony. In one randomization test, mean squared model synchrony

(fjrðhÞ
s
ðtÞjgt in Methods) for our best long-timescale model was compared to the same quantity

computed after C. finmarchicus data were replaced by surrogate datasets randomized so their

patterns of synchrony were preserved but relationships with growing season temperature were

eliminated (called spatially synchronous surrogates, Methods). Mean squared model synchrony

is distinct from mean squared model-predicted synchrony, which was pictured in Fig 2c, blue

line (Methods). The latter depends on model synchrony as well as on the strength of relation-

ship between the model and PCI.

The reduction of synchrony from the randomization, attributable to the elimination of

interactions between C. finmarchicus and temperature Moran effects, was substantial (Fig 3,

cyan line versus black line). Thus these interactions contributed substantially to the synchrony

of PCI. When C. finmarchicus data were instead replaced by asynchronous surrogates (Fig 3,

magenta line), eliminating both interactions with temperature and C. finmarchicus synchrony

itself, the further decrease was modest compared to the decrease attributable to interactions.

This highlights the importance of interaction effects. The average of fjrðhÞ
s
ðtÞjgt across long

timescales using spatially synchronous surrogates of C. finmarchicus was only 84% of the aver-

age using the actual, unmanipulated data. The actual data yielded higher average fjrðhÞ
s
ðtÞjgt

than did 97.7% of spatially synchronous surrogates. Thus PCI synchrony is significantly higher

than it would be if its two main Moran drivers were independent. Furthermore, we applied

our synchrony attribution theorem (Methods) to calculate the fractions of long-timescale syn-

chrony (mean squared WMFM) in PCI explained by, respectively, growing season tempera-

ture, C. finmarchicus abundance, and interactions between these: 41.4%, 5.4%, and 14.3%.

Interaction effects were more important than the direct effects of C. finmarchicus abundance

for PCI synchrony.

Discussion

Through a combination of novel wavelet modeling and basic knowledge of plankton biology,

we have provided compelling evidence that most of the long-timescale spatial synchrony

(mean squared WMFM) in phytoplankton density in UK seas is due to climatic Moran effects

related to temperature (41.4%), ‘top-down’ Moran effects of C. finmarchicus, a copepod con-

sumer (5.4%), and, importantly, interactions between these effects (14.3%). It has been known

for many years that C. finmarchicus and oceanographic phenomena related to temperature

have important effects on the local dynamics of PCI, but our results go beyond earlier work

by showing that these drivers and their interaction produce timescale-dependent synchrony

through the Moran effect. To our knowledge this is the first study to demonstrate interacting

Moran effects. It is reasonable to expect that similar interacting Moran effects may be a major

cause of synchrony in other systems because of the complex of related factors driving most

population fluctuations. Our results also confirm and extend the conclusions of a growing

body of work [7, 9, 15, 20, 29, 37, 38] that synchrony is strongly timescale-dependent.

Other major outcomes of our study are methodological. We described and applied wavelet

regression methods that appropriately account for spatial and temporal autocorrelation of var-

iables and that make possible model selection to determine possible drivers of synchrony. The

Interacting Moran effects in the North Sea
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wavelet modeling approach introduced here is intended to examine the specific problems of

timescale specificity in the action and effectiveness of driving variables on spatial synchrony;

and phase delays that may be part of ecological influences. Traditional linear models do not

partition variation by timescale. ANOVA- or regression-based approaches will only identify

time-delayed effects if the delay is specified before fitting. Autoregressive models can include

time-delayed effects in the form of additional terms but many such terms must be estimated

to model complex cross-spectral relationships across a range of timescales, and interpretations

of results become correspondingly difficult. By examining all possible timescales, as our wave-

let techniques do, we were able to represent any phase delay and proportionality relationship

that is found at a given timescale by a single complex number, simplifying both the statistical

testing and interpretation of such relationships. In particular, the quarter-cycle phase shift

between temperature and its effect on plankton on long timescales is naturally represented in

Fig 3. Randomizations revealed that interactions between Moran effects were important for long-timescale PCI

synchrony. Mean squared model synchrony fjrðhÞ
s
ðtÞjgt (Methods) at long timescales for our best long-timescale model

(cyan line), compared to fjrðhÞ
s
ðtÞjgt using synchrony-preserving surrogates (black line) and asynchronous surrogates

(magenta line) of C. finmarchicus data. The best model had predictors growing season temperature and C.
finmarchicus abundance, and synchrony-preserving surrogates randomized away interactions between these climatic

and top-down Moran effects while retaining the effects themselves. Black and magenta lines show average results

across 1000 surrogates. C. fin. = C. finmarchicus; unsync. refers to surrogates of the C. finmarchicus data for which

synchrony, as well as relationships with temperature data, has been randomized away.

https://doi.org/10.1371/journal.pcbi.1006744.g003
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this way. Our new wavelet Moran theorem and synchrony attribution theorem are useful

to partition the amount of synchrony due to individual factors and to interactions. Our

approaches are based on and extend a long history of using wavelets as a standard tool for

time series analysis [32], many years of application in ecology (e.g., [39, 40]), and a growing

literature in which wavelets and other spectral methods are applied to synchrony [7, 9, 15, 20,

28–30].

Our models are statistical and do not, taken completely on their own, reveal causal relation-

ships in plankton dynamics or Moran effects. Nevertheless, our statistical results combined

with biological reasoning to make compelling the hypothesis that long-timescale fluctuations

in PCI have both climatic and top-down causes, and that PCI synchrony is therefore produced

in large part through joint Moran effects. Strong spatial coherence between two variables, A

and B (as we observed on long timescales for A = PCI and B = growing season temperature

or C. finmarchicus), means that either: A or a closely related variable causally influences the

dynamics of B; or vice versa; or causation is bi-directional; or that some third variable influ-

ences A and B. If A is temperature and B is PCI, the only reasonable possibility is that tempera-

ture and/or some related oceanographic variable influences PCI, possibly via complex

mechanisms (see below). Thus there was a climatic Moran effect. Spatial coherence between

C. finmarchicus and PCI may be expected because phytoplankton is a food resource for C. fin-
marchicus. The approximate anti-phase relationship between C. finmarchicus and PCI sup-

ports the hypothesis that increased C. finmarchicus abundance reduces PCI abundance

through grazing, bringing about a Moran effect on PCI. If, instead, the reverse causal hypothe-

sis held, i.e., high prey abundance supported high predator abundance, then the two variables

would be in phase. Bi-directional causation in a classic predator-prey cycle would suggest a

phase difference of π/2, not observed. Thus there was a top-down Moran effect. C. finmarchi-
cus is known to feed on microheterotrophs which do not contribute to PCI. In fact, microhe-

terotrophs are a sufficient resource for C. finmarchicus to perform lipid synthesis and egg

production, and egg production depends on a number of factors including food supply, phe-

nology, and temperature, of which green phytoplankton abundance is only one [41–44]. Thus

green phytoplankton abundance is apparently not a limiting factor, enabling C. finmarchicus
to causally influence PCI in an anti-phase relationship, without the strong feedbacks associated

with specialist predator-prey relationships.

Our synthetic example (Fig 1) illustrates and illuminates the mechanisms our results sup-

port as underlying PCI synchrony. Model synchrony is high in part because fluctuations in

PCI attributable to the two variables (growing season temperature and C. finmarchicus abun-

dance) are reinforcing—they are in phase. The effects of temperature (probably indirect—see

below) are shifted by a quarter-cycle relative to temperature itself, and are reinforced by the

effects of C. finmarchicus, which are in anti-phase with C. finmarchicus itself. These effects

match the effects illustrated in the example (Fig 1) of β and α, respectively, on γ(3). If phase

relationships among the variables were to shift, interaction effects could cease or become

negative, as in the synthetic example, reducing PCI synchrony. This could occur even if the

strength of PCI dependence on these drivers and the spatial synchrony of the drivers remained

unchanged, just as analogous phase shifts reduced synchrony in the synthetic example (Fig 1i,

green line).

Long timescale drivers of synchrony, such as temperature, are less likely to be detectable in

short time series data than are short-timescale covariates such as echinoderm larvae abun-

dance. The existence of a phase shift between drivers and PCI makes detections with limited

data even more difficult via correlation-based approaches. Nevertheless, these long-timescale

relationships should not be overlooked as they are strong drivers of synchrony. They are also

very relevant to consideration of a persistent change in the ecosystem such as a regime shift.
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The long-timescale climatic Moran effects that our analysis reveals are unlikely to be direct

effects solely of temperature on phytoplankton growth and abundance; they are more likely to

reflect Moran effects of multifaceted oceanographic processes implicating water-column mix-

ing, nutrients, and light penetration as well as temperature. In many marine systems, sea sur-

face temperature is closely negatively correlated with near-surface nutrient concentrations

because vertical mixing elevates sub-surface waters which are both cold and nutrient rich.

Also, surface heating tends to stratify the water column, which leads to the depletion of nutri-

ents in the mixed layer. Mixing also affects light penetration by increasing concentrations of

suspended sediments. These interrelated processes are often studied on seasonal timescales

[12], whereas our statistical results pertain to timescales > 4 years. Our results only reveal the

importance of climatic Moran effects for PCI synchrony, not the detailed oceanographic

mechanisms. Detailed study of mechanisms may be an important topic of future work. Ocean-

ographic mechanisms of synchrony have been explored, for example, for the sub-polar and

sub-tropical North Atlantic [14], away from the continental shelf.

Defriez et al. demonstrated that dual Moran effects of temperature and precipitation help

produce synchrony of terrestrial vegetation on global scales, though they did not find interac-

tion effects between these factors [9]. Their statistical approach was geographic, and differed

fundamentally from ours. But the two approaches are complementary, and it may be possible

to combine them to maximize the potential for the statistical detection of causes of synchrony

and interaction effects. Walter et al. provide some initial steps toward integrating spatial and

wavelet approaches [37].

At certain timescales there is a lot of reinforcement between drivers of PCI synchrony (Fig

3, 18-year timescale, compare cyan and black lines), yielding additional synchrony; at other

timescales less (Fig 3, 8-year timescale). These differences between timescales in the degree of

reinforcement between Moran effects may possibly be a consequence of particular processes of

climatic variability, with their own characteristic timescales, being incorporated into both driv-

ers, thereby creating reinforcement only on those characteristic timescales. The underlying

timescale-specific nature of interactions between Moran drivers could be another fruitful topic

of future research.

Powerful parametric methods now exist (e.g., [45]) to fit complex nonlinear mechanistic

models to spatiotemporal population data sets to infer system parameters and mechanisms

driving dynamics. Although these methods have been used effectively, especially for infectious

disease dynamics, we pursued nonparametric wavelet approaches instead because we think the

space of possible dynamical models for plankton in UK seas is still too poorly constrained for

the mechanistic approach. The approach proceeds by proposing a suite of alternative models

which may represent the dynamics of a system. Models are fitted to data using powerful mod-

ern statistical tools, and model selection is used to determine which model, and therefore

which combination of mechanisms, is best supported. For instance, cholera dynamics in Ben-

gal, for which high resolution data were available, were confronted with a few alternative mod-

els to make valuable inferences about the importance of asymptomatic or unreported cases

[46]. But plankton include hundreds of species, and thousands of reasonable alternative mod-

els could probably be specified. Each model would be elaborate, and available data may not be

sufficient to adequately constrain parameters. Our nonparametric wavelet approach can pro-

vide mechanistic insights for complex systems, helping reduce the space of possible models

and possibly paving the way for future mechanistic modeling.

Recent evidence suggests that changes in the synchrony of climatic drivers and the popula-

tions they influence may be a more important consequence of global change than previously

recognized [7, 20, 47–50]. C. finmarchicus is in decline in UK seas because it is a cold-water

species and is shifting northward with climatic warming [26]; it is being replaced by C.
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helgolandicus. Relative to C. finmarchicus, C. helgolandicus had different phase relationships

with both PCI and growing season temperature (details not shown), so our results show the

potential for major changes in PCI synchrony stemming from both changes in direct top-

down Moran effects and changes in interactions between top-down and climatic Moran

effects (Appendix S2 and S3 Fig for details and substantial uncertainties about the future state

of the North Sea ecosystem). Phytoplankton are at the root of the marine food web, and it is

known that patterns of phytoplankton synchrony and patchiness have a major influence on

the foraging of higher-trophic-level organisms [20, 51, 52]. Thus understanding the future of

phytoplankton synchrony has major practical implications. We hope our methods and the

understanding we provided of the causes of past PCI synchrony serve as a launch point for

important future research predicting how patterns of plankton synchrony in the oceans may

be altered.

Materials and methods

Data

The CPR survey has consistently monitored plankton in the seas around the British Isles, on

a monthly basis since January 1946 [53]. The survey, operated by SAHFOS from 1999 until

recently when it was taken over by the MBA, uses voluntary merchant ships of opportunity to

tow the CPR sampling device. At any given time several devices are in use, towed along differ-

ent shipping routes. The device traps plankton on a continuously moving ribbon of silk, which

is later cut into sections for microscope analysis. Each section represents a 10 nautical mile

transect made at a particular time and place. The number of organisms of various types is

recorded, together with the PCI, which corresponds to the amount of chlorophyll retained on

the ribbon. Detailed descriptions of the survey are published elsewhere [22, 54].

The PCI has four values corresponding to observations of ‘No Green’, ‘Very Pale Green’,

‘Pale Green’, and ‘Green’. Colebrook gives the dilution factors needed to render samples with

different colors the same color: ‘Very Pale Green’ = 1, ‘Pale Green’ = 2, ‘Green’ = 6.5 [53]. We

used Colebrook’s original dilution factors to generate our time series (Appendix S3). Other

authors indicate that the PCI is well correlated with satellite ocean chlorophyll measurements

during the satellite period [21, 22, 55].

The ecological and physical variables to be compared with PCI and examined as potential

Moran drivers or covariates are shown in Tables 1 and 2, respectively. We examined densities

of 13 major zooplankton components from the CPR, including the important phytoplankton

consumers C. finmarchicus and C. helgolandicus, calanoid copepod species. Data about physi-

cal oceanographic variables were downloaded from the International Comprehensive Ocean-

Atmosphere Data Set (ICOADS) Release 2.5. We investigate measurements of temperature

and salinity made in the top ten meters of the water column, and measurements of wind speed

and cloud cover made at the sea surface.

Measurements of each of the biological and physical variables were compiled into 26 time

series representing 2 by 2 degree areas of sea (Appendix S3, S4 Fig). Our annualized data

reflect changes in the growing conditions of the annual phytoplankton bloom. Many genera-

tions of organisms contribute to the phytoplankton bloom each year, and their overall abun-

dance is driven by climatic and other factors that vary on long timescales, and in the case of

some climatic phenomena, periodically. This results in corresponding inter-annual variation

in the PCI, which can be identified with timescale-specific methods. Annual time series for

several variables are in S5–S9 Figs. For each variable the annualized time series were subjected

to Box-Cox normalization (see Appendix S4, S2 Table, and [56]).
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Statistical methods

We use a variety of methods, some new. Here we summarize the techniques and how to inter-

pret their outputs, with details in the Supporting Information. Please see www.github.com/

reumandc/wsyn for a software package for the R statistical programming language containing

code for the techniques of this study and a vignette explaining how to use the code. We start

with wavelet transforms, on which other methods are based. Time series can be regarded as

composed of fluctuations on different timescales (i.e., of different characteristic oscillatory

periods). The wavelet transform provides time- and timescale-specific information on these

fluctuations. We use a complex Morlet transform, as demonstrated in S10 Fig and described

mathematically in Appendix S5.

The spatial coherence [7] of two spatiotemporal variables xð0Þn ðtÞ and xð1Þn ðtÞmeasured at

locations n = 1, . . ., N and times t = 1, . . ., T quantifies, in a timescale-specific way, the strength

of the association between the variables. The spatial coherence, which is based on the ‘power-

normalized’ (Appendix S5) wavelet transforms wð0Þn;sðtÞ and wð1Þn;sðtÞ of xð0Þn ðtÞ and xð1Þn ðtÞ, is a

function of timescale, σ. It takes values between 0 and 1, with higher values meaning a stronger

association (Appendix S6).

Unlike commonly used correlation measures, the spatial coherence has the benefit of find-

ing associations even if fluctuations are strongly related only on particular timescales, and even

if there are phase delays between the corresponding fluctuations. A demonstration of the spa-

tial coherence technique is in S11 Fig.

We approached question 1 from the Introduction via a multivariate linear modeling

approach for wavelet transforms (Appendix S7) that made it possible to quantify determinants

of synchrony in PCI and their interactions. If xðkÞn ðtÞ for k = 0, . . ., K are spatiotemporal vari-

ables (n = 1, . . ., N, t = 1, . . ., T) and wðkÞn;sðtÞ are their power-normalized wavelet transforms

(Appendix S5), then the linear models statistically explain variation in the response transforms

wð0Þn;sðtÞ in terms of the predictor transforms wðkÞn;sðtÞ:

wð0Þn;sðtÞ � b1ðsÞwð1Þn;sðtÞ þ � � � þ bKðsÞwðKÞn;s ðtÞ: ð2Þ

We take xð0Þn ðtÞ to be PCI, and xðkÞn ðtÞ for k> 0 to be potential influences on PCI (different

variables selected from Tables 1 and 2 in different models). Such models can be fitted with

data; for a given model, the fitted coefficients of the model, which are functions of timescale,

maximize (Appendix S7) the spatial coherence between the left and right sides of Eq 2 at

every timescale. Two nested models can be compared statistically using surrogate resampling

approaches (Appendix S8) which are standard in wavelet statistics; conceptually, these are

analogous to standard F-tests between nested linear models in the sense that a more complex

model is tested against a simpler alternative. But F-distributions are not used in the wavelet

case. Conventional significance tests assuming serially independent data are inappropriate for

spatially synchronous wavelet transform data in which correlations are present between the

values. The Fourier surrogates we use (Appendix S8) are a standard alternative.

A model selection and testing procedure (Appendix S9) determines which predictors

k = 1, . . ., K should optimally be included for a given range of timescales. These predictors

are the good candidates for statistically explaining PCI dynamics and synchrony on those

timescales. For a model to be ranked, each predictor transform wðkÞn;sðtÞ (k> 0) included in

the model was required to provide a significant improvement over the model with that pre-

dictor removed. Among those models for which all predictors were significant, we per-

formed leave-one-out cross validation to select the best model and avoid over fitting. Models

Interacting Moran effects in the North Sea
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were constructed separately for short (< 4 years) and long (> 4 years) timescales. The choice

of these two timescale ranges was justified in the main text and in Appendix S9.

Best models selected by the model selection procedure were tested in additional ways

(Appendix S10-Appendix S12) beyond the testing that was built into the selection procedure

(Appendix S9). First, the phases of the model coefficients βk(σ) are supposed to represent the

phase lag of effects (or associations) at timescale σ of xðkÞn ðtÞ on xð0Þn ðtÞ (Eq (2) for notation).

Strong associations which are consistent over time and space should therefore produce a cor-

respondence between the phase of βk(σ) and the average phase, over space and/or time, of

wð0Þn;sðtÞw
ðkÞ
n;sðtÞ, where the overbar denotes complex conjugation; the phase of this quantity is

the phase difference between xð0Þn ðtÞ and xðkÞn ðtÞ at timescale σ, time t, and location n. We tested

for this phase correspondence and found it to be good (Appendix S10). The phases of the βk
for our best-fitting models were extracted for interpretation of model output (Results), to

determine the lag between the fluctuations in the kth predictor and the corresponding content

in the PCI wavelet transforms. Details of this process are also in Appendix S10.

Another test of the potential usefulness of our top-ranked models as tools to reveal Moran

effects had to do with whether the models represented ‘local associations’. An alternative possi-

bility is that PCI is statistically associated with these variables on average across the the British

seas sampled, but that seawater mixing and dispersal prevent the dynamics of PCI from being

attributable to local drivers. This alternative possibility would suggest a dominant role of dis-

persal as a synchronizing agent rather than Moran effects. We tested for local associations

between PCI and the four predictor variables appearing in top models at long or short time-

scales through a spatial permutation test. Results indicated that associations were local in all

cases, with details in Appendix S11.

Finally, spatial coherences between nine individual phytoplankton species abundances

from the CPR data set and C. finmarchicus were tested in earlier work [38], and those results

were also consistent with our findings that PCI and C. finmarchicus were significantly spatially

coherent and in anti-phase (Appendix S12).

Given a spatiotemporal dataset xn(t), we used two tools for describing the synchrony

among these time series, and its time and timescale dependence. The wavelet mean field mag-
nitude (WMFM) plot, here denoted |rσ(t)|, is the magnitude of rsðtÞ ¼ 1

N

PN
n¼1

wn;sðtÞ. The

WMFM plot is applied in Fig 1b, 1c and 1e–1g, from which one can get a sense of the nature of

the output of the method and how to interpret that output. See Appendix S13 for details. We

refer to the quantity 1

T

X

t
jrsðtÞj

2
¼ fjrsðtÞjgt as the mean squared synchrony of the xn(t),

where {�}t here and henceforth denotes the time average of the square of the quantity in braces.

The wavelet phasor mean field magnitude (WPMFM; Appendix S13) provides a plot in the

same format as the WMFM, but quantifies only the phase synchrony of the xn(t) as a function

of time and timescale. Phase synchrony is always between 0 and 1 and equals 1 at the t and σ
for which time series have identical phases of oscillation. Phase synchrony can be straightfor-

wardly tested for significance at t and σ. Details on these techniques are in Appendix S13 and a

demonstration is in S12 Fig. WMFM and WPMFM plots for PCI are in S2 Fig, and for several

other variables in S13–S16 Figs.

Having determined robust wavelet models (Eq 2) of PCI transforms for long and short

timescales as described above, we applied a new ‘wavelet Moran theorem’ (Appendix S14) to

quantify to what extent the synchrony in PCI can be explained by the predictors included in

our best models. The theorem is a generalization of an earlier result [7]. A wavelet model

can be a good model, in the sense that it is validated by our testing procedures and explains

a significant amount of variation in wð0Þn;sðtÞ, without contributing to synchrony. Our Moran
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theorem allows us to quantify how well the predictors explain synchrony. In words, the

theorem states that at timescale σ, if the only synchronizing influences on a biological

variable xð0Þn ðtÞ are the biotic or abiotic variables xðkÞn ðtÞ for k = 1, . . ., K, then the strength of

synchrony of the biological variable is the strength of synchrony in the best-fitting wavelet

model times a spatial coherence of that model with the biological variable. In formulas,

fjrð0Þ
s
ðtÞjgt � fjr

ðhÞ
s
ðtÞjgtjP

ð0hÞ
s
j
2
, where jrð0Þ

s
ðtÞj is the WMFM of xð0Þn ðtÞ, jr

ðhÞ
s
ðtÞj is a WMFM for

the best-fitting wavelet model, and jPð0hÞ
s
j is a spatial coherence of the model with the biologi-

cal variable. The left side measures synchrony of the biological variable and the first multipli-

cand measures model synchrony for a model that accounts for the variables xðkÞn ðtÞ, k = 1, . . .,

K. The theorem formalizes the reasoning that synchrony of a driven variable should depend

on synchrony of the combined effects of the drivers and on the strength of the influence of the

drivers. Additional independent drivers may act to increase synchrony of the xð0Þn ðtÞ, turning

the approximate equality,�, into an inequality, >. The right side of the Moran formula is then

the amount of synchrony attributable to the drivers xðkÞn ðtÞ for k = 1, . . ., K.

The theorem also provides a ‘predicted synchrony’ plot for a model, which has format

like the WMFM plot jrð0Þ
s
ðtÞj and can be compared to it, but shows the pattern of synchrony

that would pertain if the only synchronizing influences on xð0Þn ðtÞ were the variables xðkÞn ðtÞ
(Appendix S15). Observed synchrony of xð0Þn ðtÞ (i.e., jrð0Þ

s
ðtÞj) is expected to be strictly

greater than predicted synchrony, the difference corresponding to synchronizing influences

not included in the model. Using the Moran theorem, it is straightforward to quantify

the fraction of synchrony explained by the model for a timescale band (Appendix S15).

With xð0Þn ðtÞ being PCI, we calculated predicted synchrony and fractions of synchrony

explained for long and short timescales using our best long- and short-timescale models,

respectively.

To investigate whether interaction effects of Moran drivers were important for the

synchrony of PCI, we considered mean squared model synchrony fjrðhÞ
s
ðtÞjgt of the best

models chosen by our methods, and we analyzed how it was affected by randomizations

of predictor variables that eliminated any interaction effects that may have occurred

(Appendix S16).

We also proved an extension of our wavelet Moran theorem (theorem 1 Appendix S14),

dubbed the ‘synchrony attribution theorem’ (theorem 2 Appendix S17), that makes it possi-

ble to partition synchrony explained by a wavelet model into components explained by indi-

vidual predictors, and a component explained by interaction effects between predictors. We

applied the theorem with xð0Þn ðtÞ again being PCI. We tested our methods on the numerical

example of the Theoretical illustration section of Results (Appendix S18).

Supporting information

S1 Text. One supplementary text document is provided, including Appendix S1 to S19.

(PDF)

S1 Table. Table of best long-timescale models. Of all models we considered (Methods), the

model with the highest leave-one-out goodness of fit score for which no variables could be

dropped without significantly reducing model fit was the model listed in the top row and ana-

lyzed in the main text. The table includes all models considered for which the leave-one-out

goodness of fit score was at least 90% that of the top model and for which no variables could be

dropped without significantly reducing model fit.

(PDF)
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S2 Table. The mean of the Box-Cox coefficients found at each location, for every variable.

(PDF)

S1 Fig. Phytoplankton wavelet phase shifts relative to four explanatory variables, com-

pared to phases of coefficients of top-ranked models, for the purposes of testing and inter-

preting top-ranked models. Top panels: The typical phase difference, φ, i.e. the phase of

1

N

P
ne

iZðn;tÞ, where η(n, t) is the phase of wð0Þn;sðtÞw
ðkÞ
n;sðtÞ, for the four predictors k appearing in

the top-ranked models at long and short timescales: growing season temperature (a); C. fin-
marchicus abundance (b); echinoderm larvae abundance (c); and decapod larvae abundance

(d). Bottom panels: The typical phase difference, θ, i.e. the phase of 1

NT

P
n;te

iZðn;tÞ (green),

compared to phases of corresponding coefficients βk(σ) from top-ranked models (magenta).

Magenta lines extend across long timescales for predictors included in the top-ranked long-

timescale model, across short timescales for predictors included in the top-ranked short-time-

scale model, and across long and short timescales for C. finmarchicus, since that variable was

in the top-ranked models for both long and short timescales. Temp. = growing season temper-

ature; C. fin. = C. finmarchicus; Ech. = echinoderm; Dec. = decapod.

(JPG)

S2 Fig. The synchrony of PCI expressed as wavelet mean field magnitude (a) and wavelet

phasor mean field magnitude (b) plots. Statistical significance thresholds on the WPMFM

are plotted as contours showing actual phase agreement between locations greater than the

90th, 95th, 99th and 99.9th percentile of a distribution of unsynchronized unit phasors (dotted,

dash-dotted, dashed and line contours respectively).

(JPG)

S3 Fig. Like Fig 3 from the main text, but with one additional line (the red line) represent-

ing mean squared model synchrony after setting the coefficient βk(σ) of the C. finmarchi-
cus term in the best long-timescale model (see main text) to 0.

(JPG)

S4 Fig. The 26 areas of the North Sea and British seas which were used.

(JPG)

S5 Fig. The annualized time series for PCI (mean of 12 monthly values). Plots numbered as

in S4 Fig.

(JPG)

S6 Fig. The annualized time series for growing season temperature (mean of monthly val-

ues for March to September). Plots numbered as in S4 Fig.

(JPG)

S7 Fig. The annualized time series for C. finmarchicus abundance (mean of 12 monthly val-

ues). Plots numbered as in S4 Fig.

(JPG)

S8 Fig. The annualized time series for echinoderm larvae abundance (mean of 12 monthly

values). Plots numbered as in S4 Fig.

(JPG)

S9 Fig. The annualized time series for decapod larvae abundance (mean of monthly val-

ues). Plots numbered as in S4 Fig.

(JPG)
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S10 Fig. Demonstrations of the detection of oscillations on different timescales for differ-

ent times using the magnitude of the wavelet transform. The time series of panel d was the

sum of: 1) a sine wave of amplitude 1 and period 15 that operated for the first half of the time

series (a); 2) a sine wave of amplitude 1 and period 8 that operated for the second half of the

time series (b); and 3) normally distributed white noise of standard deviation 0.5 (c). Although

periodicities in (d) and changes therein are difficult to detect by eye with any certainty, the

magnitude of the wavelet transform (f; Appendix S5 in S1 Text) reveals them clearly. The time

series of (e) changes period gradually from 5 to 10. The magnitude of the wavelet transform

(g) shows the change.

(PNG)

S11 Fig. Measuring relationships between variables using spatial coherence. This figure was

adapted with only minor changes from supplementary figure 5 of [7]. The time series of panel

e were used as drivers in producing the time series of panel f and the figure shows how this

relationship can be detected with the spatial coherence technique. The time series of panel e

were constructed as the sum of: 1) a single common signal of amplitude 1 and period 12 years

(a); 2) a single common signal of amplitude 5 and period 2 years (b); and 3) normally distrib-

uted white noise of standard deviation 1.5, independently generated for each of the 10 time

series (c). The time series of panel f were produced via the relationship yn(t) = (xn(t) + xn(t
− 1))/2 + �n(t) where the �n(t) were independent normal random numbers of mean 0 and stan-

dard deviation 3. This transmits the period-12 component of the x signals to the y but not the

period-2 component because averaging covers a whole period for that component. Correla-

tions (f, green numbers) between xn(t) and yn(t) did not indicate any particular relationship.

Correlations cannot detect the relationship between the x and y because the technique con-

founds phenomena occurring on different timescales. Spatial coherences revealed a highly sig-

nificant relationship at periods around 12 years (g) and on average over long timescales (left p-

value on panel g, long timescales defined as> 4 years) but no relationship (right p-value) for

short timescales (< 4 years). The red line on g is the spatial coherence and black lines are 50th,

95th, and 99th percentiles of spatial coherences of synchrony-preserving surrogate data sets

(Appendix S8 in S1 Text) appropriately representing the null hypothesis of no relationship

between the x and y. See also Appendix S9 in S1 Text for a description of how the aggregate

long- and short-timescale p-values were computed.

(PNG)

S12 Fig. Detecting time- and timescale-specific synchrony with the wavelet mean field.

This figure was taken without change from [7]. Panels a-d show the principle of how syn-

chrony can differ for different timescales of dynamics. Time series y1 and y2 (a) are exactly

anti-correlated (out of phase), as are y3 and y4 (b). Combining y1 with y3 and y1 with y4 gives

two time series (c) which are synchronized on long timescales, but anti-synchronized on short

timescales. The reverse is also possible (d). This timescale-specific structure of synchrony can-

not be detected with correlation coefficients, which are 0 for both c and d, because contribu-

tions from different timescales cancel. In practice, real population and environmental signals

are broadband, and exact cancelation is unlikely, but asynchrony at some frequencies can

strongly conceal important synchrony at other frequencies. Panels e-k demonstrate this con-

cealment, using artificial data, and also show how the wavelet mean field detects time- and

timescale-specific synchrony. Each of 11 artificial time series were constructed as the sum of:

1) a single common signal of amplitude 1 that changes its oscillatory period at t = 50 from 10

years to 5 years (e); 2) oscillations of amplitude 3 that have the same oscillatory period (3

years), but random and independent phases in each of the 11 constructed time series (f); and

3) white noise of standard deviation 1.5, again independently generated for each of the 11 time
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series (g). Synchrony in the resulting time series cannot be visually detected (i), nor is it readily

apparent by examining the 55 pairwise correlation coefficients between time series (j), which

spanned a wide range of values including 0. But the wavelet mean field magnitude (k) showed

clear color bands at 10-year period for t< 50 and 5-year period for t> 50. The wavelet mean

field magnitude displays strength of synchrony as a function of timescale of dynamics and

time, here with red indicating synchrony and blue asynchrony. Wavelet phasor mean fields

provide plots similar to (k) but with values between 0 and 1 that indicate the strength of phase

synchrony and that can be straightforwardly significance tested as describer in Appendix S13

in S1 Text.

(PNG)

S13 Fig. The synchrony of temperature expressed as wavelet mean field magnitude (a) and

wavelet phasor mean field magnitude (b) plots. Statistical significance thresholds on the

WPMFM are plotted as contours showing actual phase agreement between locations greater

than the 90th, 95th, 99th and 99.9th percentile of a distribution of unsynchronized unit pha-

sors (dotted, dash-dotted, dashed and line contours respectively).

(JPG)

S14 Fig. The synchrony of C. finmarchicus abundance fluctuations expressed as wavelet

mean field magnitude (a) and wavelet phasor mean field magnitude (b) plots. Statistical sig-

nificance thresholds on the WPMFM are plotted as contours showing actual phase agreement

between locations greater than the 90th, 95th, 99th and 99.9th percentile of a distribution of

unsynchronized unit phasors (dotted, dash-dotted, dashed and line contours respectively).

(JPG)

S15 Fig. The synchrony of echinoderm larvae abundance fluctuations expressed as wavelet

mean field magnitude (a) and wavelet phasor mean field magnitude (b) plots. Statistical sig-

nificance thresholds on the WPMFM are plotted as contours showing actual phase agreement

between locations greater than the 90th, 95th, 99th and 99.9th percentile of a distribution of

unsynchronized unit phasors (dotted, dash-dotted, dashed and line contours respectively).

(JPG)

S16 Fig. The synchrony of decapod larvae abundance fluctuations expressed as wavelet

mean field magnitude (a) and wavelet phasor mean field magnitude (b) plots. Statistical sig-

nificance thresholds on the WPMFM are plotted as contours showing actual phase agreement

between locations greater than the 90th, 95th, 99th and 99.9th percentile of a distribution of

unsynchronized unit phasors (dotted, dash-dotted, dashed and line contours respectively).

(JPG)
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