
EPJ Nonlinear Biomed. Phys. 5, 1 (2017)
© L.W. Sheppard et al., published by EDP Sciences, 2017
DOI: 10.1051/epjnbp/2017000

Available online at:
https://www.epj-nbp.org

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Plymouth Marine Science Electronic Archive (PlyMSEA)
RESEARCH ARTICLE
Rapid surrogate testing of wavelet coherences
Lawrence W. Sheppard1,*, Philip C. Reid2,3,4, and Daniel C. Reuman1,5

1 Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, Lawrence,
KS 66047, USA

2 Sir Alister Hardy Foundation for Ocean Science, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
3 Marine Institute, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
4 Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
5 Laboratory of Populations, Rockefeller University, 1230 York Ave., New York, NY 10065, USA
* e-mail: l

This is an O
Received: 29 September 2016 / Accepted: 9 March 2017

Abstract. Background. The use of wavelet coherence methods enables the identification of frequency-
dependent relationships between the phases of the fluctuations found in complex systems such as medical and
other biological timeseries. These relationships may illuminate the causal mechanisms that relate the variables
under investigation. However, computationally intensive statistical testing is required to ensure that apparent
phase relationships are statistically significant, taking into account the tendency for spurious phase relationships
to manifest in short stretches of data.
Methods. In this study we revisit Fourier transform based methods for generating surrogate data, with which
we sample the distribution of coherence values associated with the null hypothesis that no actual phase
relationship between the variables exists. The properties of this distribution depend on the cross-spectrum of the
data. By describing the dependency, we demonstrate how large numbers of values from this distribution can be
rapidly generated without the need to generate correspondingly many wavelet transforms.
Results. As a demonstration of the technique, we apply the efficient testing methodology to a complex
biological system consisting of population timeseries for planktonic organisms in a food web, and certain
environmental drivers. A large number of frequency dependent phase relationships are found between these
variables, and our algorithm efficiently determines the probability of each arising under the null hypothesis,
given the length and properties of the data.
Conclusion. Proper accounting of how bias and wavelet coherence values arise from cross spectral properties
provides a better understanding of the expected results under the null hypothesis. Our new technique enables
enormously faster significance testing of wavelet coherence.

Keywords: continuous wavelet transform / significance testing / surrogates / Fourier transforms
1 Introduction

In biophysical systems, multivariate data is often auto-
correlated and cross correlated and incorporates a
spectrum of fluctuations on different timescales. A
coherence measures the tendency for a particular phase
relationship to exist between fluctuations in two signals,
and can illustrate how this relationship varies with
frequency. For finite data, spuriously high coherence can
arise where there are correlations between successive phase
measurements [1].

A continuous wavelet transform can be applied to any
signal to extract phase values corresponding to fluctuations
with different timescales. Biophysical examples include
wsheppard99@hotmail.com
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blood flow and temperature fluctuations in human skin
subject to heating and cooling [2], fluctuations in human
blood pressure and skin conductivity during anaesthesia [3],
and the intracranial pressure and arterial blood pressure in
subjects with a traumatic brain injury [4]. Wavelet trans-
forms and related methods have also been applied to study
phase relationships in ecology [5–9]. As an example of a
complex biophysical system described by spatiotemporal
data incorporating frequency-dependent phase shifts, we
examine the annual changes in the abundance of different
plankton species in the seas around the British Isles since
1958. Pioneering work using Fourier methods [10] showed
a phase shift between the fluctuations in phytoplankton
productivity and sea surface temperature.

We define a wavelet coherence as an average over time
of a complex quantity with a phase representing the phase
difference between transforms of two timeseries, at a
mons Attribution License (http://creativecommons.org/licenses/by/4.0),
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Fig. 1. (a) Phase shift of wavelet components of the first
difference of h(t) relative to h(t), in blue, and phase shift of
wavelet components of the cumulative sum of h(t) relative to h(t),
in red. Black lines are at p/2 and �p/2. (b) The driver, h(t), is
white noise, with a power spectrum shown in green (the area
under the curve represents the wavelet power in a spectral
interval), while the power spectrum of the first difference of h(t) is
shown in blue and that of the cumulative sum is in red.
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particular time and timescale. The magnitude of this
average therefore represents the tendency to preserve a
particular phase difference over time, and the phase is the
typical phase difference that is preserved. The wavelet
coherence is analogous to a correlation coefficient, but
maintaining the advantages of frequency specificity and
retention of explicit information about phase.

Coherence statistics are closely related to directional
statistics, particularly in the case of the wavelet phase
coherence [11]. To compute the wavelet phase coherence,
the amplitude variability of the wavelet components is
removed from consideration and the coherence is calculat-
ed using normalised unit phasors representing the phase
values extracted from the wavelet transforms at each point
in time. The phase coherence is equal to one minus the
circular variance of the phase difference (calculated across
time) [12]: both are measures of the tendency to preserve a
fixed phase difference. Equivalently, the circular variance
is a measure of the spread of values in a circular
distribution, and the phase coherence a measure of the
tendency to cluster around a single modal value. The same
biases arising from non-independence of successive phase
values arise in both measures.

Where pairs of timeseries are available from several
spatial locations or measurement sessions, we can general-
ise to a spatial wavelet phase coherence. We calculate a
spatial coherence [8] by taking an average over both times
and locations. The magnitude reflects the tendency to
preserve the same phase difference at all times and
locations, and the phase is this typical phase. Having data
from many locations increases the ability to pick out a
typical phase in partially coherent systems, but requires
careful statistical testing. If the timeseries being compared
are themselves spatially correlated, then measurements of
the phase differences found between them at the different
locations are non-independent.

Methods of generating artificial surrogate data [13,14]
are commonly used to test whether particular coherence
values are likely to occur under the null hypothesis of no
relationship between variables. Surrogates based on
Fourier transforms of the data preserve its spectral
properties to make a fair test. Reference [15] defines a
procedure for generating surrogates of several timeseries
(e.g., timeseries representing the same variable measured
at several sites simultaneously) while preserving their
cross spectra. We refer to these as spatially synchronous
surrogates; such surrogates are required to test the null
hypothesis that two sets of timeseries taken from the same
set of locations are themselves spatially correlated but no
relationship exists between them.

Different patterns of frequency dependent phase
relationship occur for different kinds of dependent system,
so detecting phase relationships may illuminate the nature
of the dependence. We give five examples. First,
correlation and anti-correlation are equivalent to a 0-
radians phase shift and a p-radians phase shift, respec-
tively. Secondly, autoregressive moving average (ARMA)
models [16] can produce diverse patterns of frequency
dependent phase relationships. If we wish to represent a
variable x(t) by an ARMAmodel, multiplying the spectral
components of a driver h(t) by a complex factor (the
transfer function), this factor must be frequency depen-
dent in both amplitude (gain) and phase. The frequency
specificity of the relationship between variables in the
kinds of models that occur frequently in biological and
nonlinear systems motivates us to test for frequency
specific coherence, using time-frequency methods. Third-
ly, synchronization of periodic oscillators by small phase
adjustments can produce extremely high coherence at
their oscillation frequency [17]. Fourthly, combination of
different periodic processes in the same time series [18] can
produce distinct phase relationships at the different
periods involved. Fifthly, rate dependencies: sometimes
the value of one variable depends on the rate of change of
another, or vice versa. Because d sin (vt)/dt=v cos (vt),
either differentiating or integrating any time series
represented by a sum of sinusoids with respect to time
produces another sum of sinusoids, with a positive or
negative p/2 phase shift and a gain proportional or
inversely proportional to frequency. Figure 1a presents
the phase shift between the Morlet wavelet components of
sample Gaussian white noise h(t) and the first difference of
h(t), compared to the typical phase difference between
h(t) and the cumulative sum of h(t), as determined by the
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wavelet phase coherence approach. Figure 1b shows the
wavelet power of h(t), its first difference, and its
cumulative sum. We see that the lowest-frequency
components of either the first difference or cumulative
sum are shifted by a quarter cycle relative to h(t). The
higher the sampling frequency relative to the frequency of
interest, the closer the first difference and cumulative sum
operations come to producing a p/2 shift at that
frequency.

Because coherence methods are common and useful but
require computationally intensive significance testing, and
because coherence methods are increasingly used with
spatial data and/or in complex multi-variate systems,
there is a need to develop a faster significance testing
method.We here provide one. Sections 2.1–2.3 describe the
method. Sections 2.4 and 3 describe an application to
complex ecological data that would be difficult or
impossible without the computational speed-up achieved
by the new method. Section 4 concludes.
2 Methods

2.1 Wavelet coherence, spatial wavelet coherence,
and spatial surrogates

Wavelet phase coherence PF
s [11] is computed at each

frequency by extracting only the phase values, fk,s(t), at
scale s at each time t from t=1 to t=T, from two wavelet
transforms indexed by k=1, 2 [19]. The phase difference is
fs(t)=f1,s(t)�f2,s(t).

PF
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT
t¼1

cosfsðtÞ
 !2

þ 1

T

XT
t¼1

sinfsðtÞ
 !2

vuut ð1Þ

¼ 1

T

XT
t¼1

eiðf1;sðtÞ�f2;sðtÞÞ
�����

�����: ð2Þ

Thismagnitude is the phase coherence, and the phase of the
summation tells us the phase difference that is maintained
(on average) between these components. Wavelet phase
coherence can also be written

PF
s ¼ 1

T

XT
t¼1

eif1;sðtÞe�if2;sðtÞ
�����

�����: ð3Þ

We can define a wavelet coherence to include the time-
varying magnitudes of the wavelet components, wk,s(t)=
Ak,s(t)e

ifk,s(t),

Pw
s ¼ 1

T

XT
t¼1

w1;sðtÞw2;sðtÞ
�����

�����: ð4Þ

We can significance test this quantity by comparison with
the magnitude of the same dot product obtained for the
transforms of surrogate timeseries. If there is correlated
amplitude variability in the transforms this will tend to
enhance the wavelet coherence relative to the wavelet phase
coherence. However, correlated amplitude variability alone
cannot produce high wavelet coherence; the oscillations
themselves must maintain a particular phase relationship.
Sensitivity to amplitude dynamics, and mathematical
properties that make the wavelet coherence suitable for
efficient surrogate testing, make the wavelet coherence a
useful way of quantifying frequency-dependent associations
in data.

Here and throughout we perform an average over all T
values in the transform at a given frequency. Coherence
measures can also be calculated inside a moving window, or
by means of a convolution in the time domain with some
weighting function such as a Gaussian. In this paper we
focus on significance testing the tendency to maintain
coherence over all time rather than within such a window.

Where transforms wk,n,s(t) are available of data from
several locations, indexed by n from 1 to N, we can define a
spatial wavelet coherence,

Ps
s ¼ 1

N

XN
n¼1

1

T

XT
t¼1

w1;n;sðtÞw2;n;sðtÞ
�����

�����; ð5Þ

and this quantity can be significance tested by the use of
spatially synchronous surrogates [8].

2.2 Wavelet scalloping and false negative results

When calculating wavelet coherence of time series, one
standard way to calculate the needed wavelet transforms
is by the following method [20]. Denote one of the time
series by x(t) for t=1, … , T, and denote the wavelet of
scale s by csðtÞ ¼ s�1=2ðei2pf0t=s � e�ð2pf0Þ2=2Þe�t2=ð2s2Þ,
where s= s/f0 and f0 = 1/2 (we use the complex Morlet
wavelet [19], see Supplementary Material, Appendix S1).
Let c0

sðtÞ be the time series obtained by: (1) sampling
cs(t) at integer values of t; (2) throwing away the t for
which the Gaussian envelope e�t2=ð2s2Þ is less than 0.1% of
its maximum value; (3) defining L to be the positive
integer such that there are 2L+1 values remaining at
this point; and (4) padding with T zeros on the right so
the final time series c0

sðtÞ has length 2L+1+T. Denote
by x0(t) the sequence obtained by padding x by 2L+1
zeros on the right. The wavelet component is an
(appropriate) stretch of T of the values from the
convolution x0ðtÞ � c0

sðtÞ. For computational efficiency,
the convolution is carried out indirectly (but still
exactly) using the convolution theorem (see [21], pp.
29 and 36): it is IDFTðDFTðx0ðtÞÞDFTðc0

sðtÞÞÞ, where
DFT is the discrete Fourier transform and IDFT is its
inverse. The reason for zero padding is to make this rapid
DFT-based computation equal to the (non-circular)
convolution of the original, un-padded time series.
Scalloping can be performed to remove poorly estimated
values at the edges of the resulting time series, for which
the wavelet substantially overhangs the edge of x(t) and
the resulting convolution value is overly influenced by
the added zeros.

We adopt a slightly different approach. The (continu-
ous) Fourier transform of cs(t) is known analytically:
CsðfÞ¼ð2psÞ1=2ðe�ð2psðf�f0=sÞÞ2=2�e�ð2psfÞ2=2�ð2pf0Þ2=2Þ. The
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Fig. 2. The false positive rate obtained at each frequency for
tests of wavelet coherence based on independent data (a); and the
false negative rate for an example of partly correlated data (b).
The standard wavelet coherence algorithm is in red; the new, fast
algorithm using circular convolutions and no scalloping is in
green. Rates are based on 1000 simulations. Tests are based on
1000 surrogate data sets for each. See text for additional details.
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product DFT(x(t))(f)Cs(f) is evaluated and is taken as the
DFT of the desired wavelet component. In fact the
wavelet component itself is never needed for our wavelet
coherence surrogate testing algorithm (see Sect. 2.3), so is
not computed; but because of the lack of zero padding, it
essentially amounts to a circular convolution of x(t) with
the wavelet (making use again of the convolution
theorem), instead of the usual non-circular convolution.
Scalloping could be performed in the usual way to remove
values at the edges of the component, for which the
wavelet substantially overhangs the edge of x(t) and the
resulting circular convolution value is overly influenced by
the other end of the time series. Via the standard
approach, scalloping removes values unduly influenced by
zeros; via the modified approach, scalloping, if performed,
would remove values unduly influenced by the use of
circular convolution.

In addition to providing computational benefits (see
Sect. 2.3), our approach is not only acceptable for our
application of wavelet coherence testing, it also reduces
false negative rates for detecting significant coherence.
When testing the significance of the coherence found
between two transforms, accurate evaluation of the ‘true’
coherence is not the goal. The aim is to determine whether
significant coherence exists at all by comparison to
surrogate coherence values subject to all the same biases.
Even edge values, which contribute considerable bias to the
coherence of both the actual and surrogate transforms, also
contribute information about the actual tendency to
maintain a phase relationship in the data itself. We used
admixtures of noise time series to examine false positive
and false negative rates for detecting significant wavelet
coherence via the standard method and via our method.
We first used unrelated simulated time series xn(t) and yn(t)
for n=1, … , 20 and t=1, … , 35. Data were standard
normal and were independent across time, locations, and
variables. The coherence at a given wavelet transform
frequency was declared to have passed the test for
statistical significance if it was greater than 95% of the
surrogate coherence values. Rates of detection of ‘signifi-
cant’wavelet coherence (these were false positives) for both
the standard and new algorithms were similar (Fig. 2a).We
then used xn(t)= en(t) and yn(t)= dn(t)+ 0.15en(t) for en(t)
and dn(t) standard normal and independent across time,
locations and variables. Failures to detect the relationship
between xn(t) and yn(t) (these were false negatives) were
fewer for the new algorithm (Fig. 2b). False positives are no
higher for the new algorithm, apparently because bias
introduced by edge effects is present in both actual and
surrogate transforms. Failed detections (false negatives)
were slightly fewer for the new algorithm, apparently
because useful information about phase relationships is in
the edge values of transforms and is discarded by the usual
approach.

We next show how unscalloped transforms based on
circular convolution can lead to fast, intuitive determina-
tion of the significance of coherence measures. Having
tested for significance, the original, less biased wavelet
coherence based on scalloped transforms and non-circular
convolution can be used to calculate coherence, with
confidence that it represents a genuine relationship.
2.3 Outline of approach to efficient calculation

The following steps used to calculate standard surrogate
wavelet coherences are shown in Figure 3. The calculation
of Fourier surrogates (box A) requires a Fourier transform
operation on the data (step 1), a random rotation of the
phases of the Fourier components (step 2), and an inverse
Fourier transform to recover a Gaussian-distributed
surrogate timeseries (step 3) [14]. If a correlation or phase
relationship existed between the original signal and
another signal, the relationship will not exist between
the surrogate timeseries and that signal. The most efficient
calculation (Sect. 2.2) of a continuous wavelet transform
(box B) involves a Fourier transform of the timeseries (step
4), ‘filtering’ in the frequency domain using the Fourier
transform of the wavelet corresponding to a given scale
(step 5), and then inverse Fourier transforming to obtain a
series of complex values corresponding to the wavelet
transform of the timeseries at that scale (step 6). Finally,
conjugate wavelet transform components of the second
variable are combined via a kind of dot product (Eq. (4))
with the results of step 6 to produce the desired surrogate
coherences (step 7, box C).



Fig. 3. Comparison of standard and efficient ways to calculate the wavelet coherence of a Fourier surrogate with some second variable.
Multiple arrows are shown where the calculation must be performed for each timescale of the wavelet transform. Left (standard)
algorithm: Box A is the procedure for generating a Fourier surrogate. Box B is the procedure for generating a wavelet transform of the
surrogate (unscalloped). Box C is the procedure for calculating the wavelet coherence with the second variable. Most of the calculation
time is taken up with Fourier transforms (coloured red). Boxes A, B and C are repeated every time a surrogate is generated. Right (fast)
algorithm: Only the procedure in box D is repeated every time a surrogate is generated. The surrogate itself is defined by the random
phases that are used, but is not constructed explicitly the way it was in box A.
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Some efficiency gains are immediate. Step one is the
same for every surrogate and need only be performed once.
Steps 3 and 4 are inverses of each other under the approach
described in Section 2.2, and can be dropped.

Efficiency gains are also possible in steps 6 and 7. In step
7, one is computing the time-average quantity in equation
(4), i.e. the time average of w1ðs; tÞw2ðs; tÞ. But by
Parseval’s theorem (see [21], pp. 29 and 36), the time
average of w1ðs; tÞw2ðs; tÞ equals the frequency average
of DFTðw1ðs; tÞÞDFTðw2ðs; tÞÞ, up to a constant scaling
factor. Thus step 6 can be dropped, and step 7 replaced by a
dot product operation in the Fourier domain.

In Figure 3 we see the standard and optimised
algorithms for calculating surrogate wavelet coherences.
The most computationally intensive steps (requiring
calculation of Fourier series) are marked in red. In the
standard approach on the left, routine A (calculation of a
Fourier surrogate), routine B (calculations of the surro-
gate’s wavelet transform), and routine C (evaluation of the
surrogate coherence) must be performed for every surro-
gate. In the efficient approach on the right, only routine D
is repeated for every surrogate (see Supplementary
Material, Appendix S2).

The three preliminary steps shown requiring calcula-
tion of Fourier series in the efficient approach are the
following. The fast Fourier transform of a timeseries x(t) is
X(f), the conjugated Fourier transform of a wavelet at a
given scale cs(t) is CsðfÞ, and the conjugate FFT of the
transform components of a second variable y(t) is
Y ðfÞCsðfÞ. The product of these three quantities is
XðfÞCsðfÞY ðfÞCsðfÞ, which can be summed over f to
give the wavelet coherence at scale s, as shown in
Supplementary Material, Appendix S2, equation (5).
Alternatively we can then multiply this product by a
vector of random phasors r(f)= eif(f), as in box D, before
summation to obtain a surrogate coherence value. This
step is repeated as often as desired to obtain a distribution
of surrogate coherences.

Where data is available from several locations to
calculate a spatial coherence, a similarly efficient approach
can be used to evaluate a surrogate spatial coherence (see
Supplementary Material, Appendix S3).

2.4 Ecological data

The Continuous Plankton Recorder (CPR) survey carried
out by the Sir Alister Hardy Foundation for Ocean Science
monitors near-surface plankton in the North Sea, North
Atlantic and elsewhere. The CPR sampling device is towed
behind a ship. Organisms are caught on a silk ribbon fed
between two rollers and their abundance quantified by
manually counting individuals found in each 4 inch
segment of silk, representing 10 nautical miles of tow,
with subsampling for smaller organisms [22]. We examine
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 Rhizosolenia styliformis
 Proboscia alata
 Ceratium fusus
 Ceratium furca
 Ceratium tripos

 Ceratium macroceros
 Calanus I to IV

 Para-Pseudocalanus spp.
 Acartia spp. (unidentified)

 Oithona spp.
 Pseudocalanus elongatus Adult

 Temora longicornis
 Centropages typicus

 Calanus finmarchicus

 Metridia lucens
Echinoderm larvae

Decapoda larvae (Total)
Euphausiacea (Total)

Yearly temperature
Spring temperature

Summer temperature
Autumn temperature

Summer wind speed

Growing season salinity
Yearly cloud

Autumn wind speed
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Yearly salinity
Spring salinity

Summer salinity
Autumn salinity

 Calanus helgolandicus

Growing season temperature

Spring cloud
Summer cloud
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Growing season cloud
 Thalassiosira spp.

Yearly wind speed

 Pseudo-nitzschia delicatissima complex
 Pseudo-nitzschia seriata complex

Spring wind speed

φ
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2

Fig. 4. Phase shifts (f) between wavelet transforms of environmental variables and plankton abundance fluctuations at low
frequencies (s> 4 years). Green squares represent non-significant spatial wavelet coherence values, as evaluated by our new efficient
algorithm, other colours represent a significant (p< 0.05) phase relationship. We found p-values for all data comparisons using 10,000
spatial surrogates, and where p< 0.1 we repeated the test using 500,000 to obtain an accurate p-value.
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time series from 1958 to 2010, inclusive, of annualized data
based on CPR measurements, representing changes in the
abundances of many individual plankton species, for 26
areas of the North Sea (see Supplementary Material,
Appendix S4, Fig. S1). We include several Ceratium and
dinoflagellate species as representatives of the phytoplank-
ton, and a number of copepod species and groups which
feed on the phytoplankton, plus the larvae of larger animal
groups such as decapods (see Supplementary Material,
Appendix S4, Tab. S1).

Using our accelerated approach, we compared the
fluctuations in available ecological variables with each
other and with those in relevant environmental varia-
bles. Our environmental timeseries are seasonal averages
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 Pseudo-nitzschia seriata complex
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 Proboscia alata
 Ceratium fusus
 Ceratium furca
 Ceratium tripos

 Ceratium macroceros
 Calanus I to IV

 Para-Pseudocalanus spp.
 Acartia spp. (unidentified)
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 Pseudocalanus elongatus Adult

 Temora longicornis
 Centropages typicus
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Fig. 5. Phase shifts (f) between wavelet transforms of environmental variables and plankton abundance fluctuations at high
frequencies (s< 4 years). Green squares represent non-significant spatial wavelet coherence values, as evaluated by our new efficient
algorithm, other colours represent a significant (p< 0.05) phase relationship. We found p-values for all data comparisons using 10,000
spatial surrogates, and where p< 0.1 we repeated the test using 500,000 to obtain an accurate p-value.
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of sea surface temperature, wind speed (representing the
tendency to mix the water), salinity (dependent on
freshwater input from the coasts and saltier water from
the ocean) and cloud cover (as a proxy for sunlight
levels). Each was averaged over five different monthly
ranges representing possibly relevant time periods in the
annual bloom cycle of the plankton (see Supplementary
Material, Appendix S4, Tab. S2).
2.5 Multiple-frequency testing

We determine an overall p-value for the wavelet
coherence in a given frequency band using a procedure
based on ranks, as described in Supplementary Material,
Appendix S5. At each wavelet transform frequency
we can find the rank of the actual coherence relative
to all the surrogate coherences (i.e. the proportion of
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surrogates it exceeds). This gives a set of non-indepen-
dent ranks, one for each frequency, which can be
averaged to give an average rank for the frequency
band. For comparison, we can consider each surrogate
individually, compare it to the distribution of all the
other surrogates, and find its mean rank for the band.
The mean rank of a surrogate is expected to be close to
50%, with a spread that depends on the degree of non-
independence of the coherence values in the band. The
p-value is 1 minus the proportion of surrogate mean
ranks exceeded by the actual mean rank, and is
associated with the null hypothesis that the coherence
throughout the whole band is not generally ranked
higher relative to surrogates than would be expected by
chance.

3 Results and discussion

The results of our efficient statistical tests on spatial
wavelet coherence at low frequencies are shown in
Figure 4. The results at high frequencies are shown in
Figure 5. Coherence values not significant at the p< 0.05
level are masked with green, whereas significant values are
indicated by a filled square with a colour indicating the
phase shift between the variable indicated on the y axis
and that on the x axis. The colour map is cyclic.
Significance values are not Bonferroni corrected, so we
expect a 5 percent false positive rate.

The low and high frequency coherence plots have
several broad features in common. Physical variables of a
given type (e.g. the different seasonal temperatures) all
tend to be in phase with each other. Note how cloud cover
and temperature variables tend to be in antiphase; sea
surface temperature is lower in cloudier years.

The plankton species tend to be in phase with each
other, with the Ceratium and dinoflagellate species largely
coherent with each other. Zooplankton fluctuations
show a more complicated pattern of significant in-phase
relationships.

The results appear more stark at high than low
frequencies, perhaps because there is more information
available at high frequencies: more cycles of short-timescale
fluctuations can fit into a time series of given length.
Equivalently, in our methodology, the wavelet coherence is
found to depend on a broader band of Fourier cross spectral
values for shorter scales because the Fourier transform of
the wavelet has a wider Gaussian profile. This gives
additional statistical power (see Fig. 2b). Some zooplank-
ton species and group fluctuations appear to be coherent
with sea surface temperature fluctuations, such as
Centropages typicus, Decapod larvae, and Calanus helgo-
landicus, which is known to be favoured by warmer water
[23]. Several of the Ceratium phytoplankton species show a
tendency to fluctuate in antiphase with Calanus finmarch-
icus and Calanus helgolandicus, which are major phyto-
plankton consumers.

Wavelet coherence and wavelet phase coherence
approaches are optimal in slightly different circumstances;
unfortunately, the significance of wavelet phase coherence
cannot be tested using our efficient method. The wavelet
coherence value is reflective of the tendency to maintain a
phase relationship when andwhere amplitude is large, since
small amplitude values make little contribution to the
average that defines the wavelet coherence (Eq. (4)). The
wavelet phase coherence (Eq. (1)) reflects the tendency to
maintain a phase relationship irrespective of amplitude,
which may be desirable if, e.g., large-amplitude fluctua-
tions are associated with aberrant behavior or artefacts;
or undesirable if, e.g., small-amplitude fluctuations are
associated with poor signal to noise ratios. Because of the
missing amplitude information, the Fourier transforms
of the series eif1,s(t) and e�if2,s(t) (Eq. (3)) do not bear a
straightforward relationship to the Fourier transforms of
the time series from which they are derived, unlike w1,s(t)
and w2,s(t) (Eq. (4)), so our fast algorithm cannot
straightforwardly be adapted to wavelet phase coherence.

4 Conclusion

Wavelet coherence or spatial wavelet coherence of real
or surrogate data can be rapidly calculated via our new
method. For example, we have achieved a speed-up of over
600 times when testing 53 data points drawn from each of
26 locations (as used here). Precise speed-ups will depend
on the data and the original implementation, but should
only increase for more and longer timeseries. The
methodology applied here is fast enough to be applied to
testing large numbers of samples, large numbers of
variables, and/or windowed or time localised wavelet
coherence if desired. Efficient calculation of surrogate
coherences also opens up the possibility of efficiently
testing the goodness of fit of frequency-dependent wavelet
models such as those developed to explain spatial
synchrony in biological fluctuations [8].

Via our new method, coherence (Eq. (4)) or spatial
coherence (Eq. (5)) is ultimately a sum of products in the
frequency domain (see Supplementary Material, Appendix
S2). Examination of the products provides a new way of
understanding the standard result that coherence is biased
towards high magnitude for little data and long timescales.
Only a few Fourier frequency components have large
magnitude for any given wavelet scale. The shorter the
original timeseries the fewer Fourier components fall in a
given frequency band. The longer the scale, the narrower the
wavelet filter, resulting in a large contribution from only a
fewcomponents.Eachcomponenthas randomphase,butthe
magnitude of the sum of a few large random components
is systematically greater than that of many small ones.

Understanding and computing the expectation value
of the coherence under the null hypothesis gives us
confidence in the phase relationships that are found. In
the complex biophysical system represented by plankton
ecology in the North Sea, we find a general tendency for in-
phase fluctuations in abundance between plankton species,
complicated by idiosyncratic relationships between certain
species and between species abundances and physical
variables. Where significant, the frequency-dependent
phase relationships between biophysical variables may
illuminate the complex interactions that underpin their
dynamics.
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