266 research outputs found
Protein tyrosine phosphatase non-receptor 22 and C-Src tyrosine kinase genes are down-regulated in patients with rheumatoid arthritis
Several protein tyrosine phosphatase non-receptor 22 (PTPN22) single-nucleotide polymorphisms (SNPs) have been significantly related with rheumatoid arthritis (RA) susceptibility. Nevertheless, its potential influence on PTPN22 expression in RA has not been completely elucidated. Furthermore, PTPN22 binds to C-Src tyrosine kinase (CSK) forming a key complex in autoimmunity. However, the information of CSK gene in RA is scarce. In this study, we analyzed the relative PTPN22 and CSK expression in peripheral blood from 89 RA patients and 43 controls to determine if the most relevant PTPN22 (rs2488457, rs2476601 and rs33996649) and CSK (rs34933034 and rs1378942) polymorphisms may influence on PTPN22 and CSK expression in RA. The association between PTPN22 and CSK expression in RA patients and their clinical characteristics was also evaluated. Our study shows for the first time a marked down-regulation of PTPN22 expression in RA patients carrying the risk alleles of PTPN22 rs2488457 and rs2476601 compared to controls (p?=?0.004 and p?=?0.007, respectively). Furthermore, CSK expression was significantly lower in RA patients than in controls (p?<?0.0001). Interestingly, a reduced PTPN22 expression was disclosed in RA patients with ischemic heart disease (p?=?0.009). The transcriptional suppression of this PTPN22/CSK complex may have a noteworthy clinical relevance in RA patients
Susceptibility to type 1 diabetes conferred by the PTPN22 C1858T polymorphism in the Spanish population
<p>Abstract</p> <p>Background</p> <p>The protein tyrosine phosphatase N22 gene (<it>PTPN22</it>) encodes a lymphoid-specific phosphatase (LYP) which is an important downregulator of T cell activation. A <it>PTPN22 </it>polymorphism, C1858T, was found associated with type 1 diabetes (T1D) in different Caucasian populations. In this study, we aimed at confirming the role of this variant in T1D predisposition in the Spanish population.</p> <p>Methods</p> <p>A case-control was performed with 316 Spanish white T1D patients consecutively recruited and 554 healthy controls, all of them from the Madrid area. The <it>PTPN22 </it>C1858T SNP was genotyped in both patients and controls using a TaqMan Assay in a 7900 HT Fast Real-Time PCR System.</p> <p>Results</p> <p>We replicated for the first time in a Spanish population the association of the 1858T allele with an increased risk for developing T1D [carriers of allele T vs. CC: OR (95%) = 1.73 (1.17–2.54); p = 0.004]. Furthermore, this allele showed a significant association in female patients with diabetes onset before age 16 years [carriers of allele T vs. CC: OR (95%) = 2.95 (1.45–6.01), female patients vs female controls p = 0.0009]. No other association in specific subgroups stratified for gender, HLA susceptibility or age at onset were observed.</p> <p>Conclusion</p> <p>Our results provide evidence that the <it>PTPN22 </it>1858T allele is a T1D susceptibility factor also in the Spanish population and it might play a different role in susceptibility to T1D according to gender in early-onset T1D patients.</p
A Protective Role by Interleukin-17F in Colon Tumorigenesis
Interleukin-17F (IL-17F), produced by Th17 cells and other immune cells, is a member of IL-17 cytokine family with highest homology to IL-17A. IL-17F has been shown to have multiple functions in inflammatory responses. While IL-17A plays important roles in cancer development, the function of IL-17F in tumorigenesis has not yet been elucidated. In the current study, we found that IL-17F is expressed in normal human colonic epithelial cells, but this expression is greatly decreased in colon cancer tissues. To examine the roles of IL-17F in colon cancer, we have used IL-17F over-expressing colon cancer cell lines and IL-17F-deficient mice. Our data showed decreased tumor growth of IL-17F-transfected HCT116 cells comparing to mock transfectants when transplanted in nude mice. Conversely, there were increased colonic tumor numbers and tumor areas in Il-17f−/− mice than those from wild-type controls after colon cancer induction. These results indicate that IL-17F plays an inhibitory role in colon tumorigenesis in vivo. In IL-17F over-expressing tumors, there was no significant change in leukocyte infiltration; instead, we found decreased VEGF levels and CD31+ cells. While the VEGF levels were increased in the colon tissues of Il-17f−/− mice with colon cancer. Together, our findings demonstrate a protective role for IL-17F in colon cancer development, possibly via inhibiting tumor angiogenesis
Genetics of Systemic Sclerosis: An Update
Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy, immune cell activation, and fibrosis of the skin and internal organs. Over the past few years, a role for genetics in the susceptibility for SSc has been established. This review aims to provide an update on the progress made in the past year or so within the field of SSc genetics research. This year has been of particular interest due to the publication of a large genome-wide association study, further investigations into gene–gene interactions, and the tendency to validate genetic results in functional models
Elusive Copy Number Variation in the Mouse Genome
Array comparative genomic hybridization (aCGH) to detect copy number variants (CNVs) in mammalian genomes has led to a growing awareness of the potential importance of this category of sequence variation as a cause of phenotypic variation. Yet there are large discrepancies between studies, so that the extent of the genome affected by CNVs is unknown. We combined molecular and aCGH analyses of CNVs in inbred mouse strains to investigate this question.Using a 2.1 million probe array we identified 1,477 deletions and 499 gains in 7 inbred mouse strains. Molecular characterization indicated that approximately one third of the CNVs detected by the array were false positives and we estimate the false negative rate to be more than 50%. We show that low concordance between studies is largely due to the molecular nature of CNVs, many of which consist of a series of smaller deletions and gains interspersed by regions where the DNA copy number is normal.Our results indicate that CNVs detected by arrays may be the coincidental co-localization of smaller CNVs, whose presence is more likely to perturb an aCGH hybridization profile than the effect of an isolated, small, copy number alteration. Our findings help explain the hitherto unexplored discrepancies between array-based studies of copy number variation in the mouse genome
Salivary Glucose Oxidase from Caterpillars Mediates the Induction of Rapid and Delayed-Induced Defenses in the Tomato Plant
Caterpillars produce oral secretions that may serve as cues to elicit plant defenses, but in other cases these secretions have been shown to suppress plant defenses. Ongoing work in our laboratory has focused on the salivary secretions of the tomato fruitworm, Helicoverpa zea. In previous studies we have shown that saliva and its principal component glucose oxidase acts as an effector by suppressing defenses in tobacco. In this current study, we report that saliva elicits a burst of jasmonic acid (JA) and the induction of late responding defense genes such as proteinase inhibitor 2 (Pin2). Transcripts encoding early response genes associated with the JA pathway were not affected by saliva. We also observed a delayed response to saliva with increased densities of Type VI glandular trichomes in newly emerged leaves. Proteomic analysis of saliva revealed glucose oxidase (GOX) was the most abundant protein identified and we confirmed that it plays a primary role in the induction of defenses in tomato. These results suggest that the recognition of GOX in tomato may represent a case for effector-triggered immunity. Examination of saliva from other caterpillar species indicates that saliva from the noctuids Spodoptera exigua and Heliothis virescens also induced Pin2 transcripts
Mycobacteria activate γδ T-cell anti-tumour responses via cytokines from type 1 myeloid dendritic cells: a mechanism of action for cancer immunotherapy
Attenuated and heat-killed mycobacteria display demonstrable activity against cancer in the clinic; however, the induced immune response is poorly characterised and potential biomarkers of response ill-defined. We investigated whether three mycobacterial preparations currently used in the clinic (BCG and heat-killed Mycobacterium vaccae and Mycobacterium obuense) can stimulate anti-tumour effector responses in human γδ T-cells. γδ T-cell responses were characterised by measuring cytokine production, expression of granzyme B and cytotoxicity against tumour target cells. Results show that γδ T-cells are activated by these mycobacterial preparations, as indicated by upregulation of activation marker expression and proliferation. Activated γδ T-cells display enhanced effector responses, as shown by upregulated granzyme B expression, production of the TH1 cytokines IFN-γ and TNF-α, and enhanced degranulation in response to susceptible and zoledronic acid-treated resistant tumour cells. Moreover, γδ T-cell activation is induced by IL-12, IL-1β and TNF-α from circulating type 1 myeloid dendritic cells (DCs), but not from type 2 myeloid DCs or plasmacytoid DCs. Taken together, we show that BCG, M. vaccae and M. obuense induce γδ T-cell anti-tumour effector responses indirectly via a specific subset of circulating DCs and suggest a mechanism for the potential immunotherapeutic effects of BCG, M. vaccae and M. obuense in cancer
No signs of inbreeding despite long-term isolation and habitat fragmentation in the critically endangered Montseny brook newt (Calotriton arnoldi)
Endemic species with restricted geographic ranges potentially suffer the highest risk of extinction. If these species are further fragmented into genetically isolated subpopulations, the risk of extinction is elevated. Habitat fragmentation is generally considered to have negative effects on species survival, despite some evidence for neutral or even positive effects. Typically, non-negative effects are ignored by conservation biology. The Montseny brook newt (Calotriton arnoldi) has one of the smallest distribution ranges of any European amphibian (8 km2) and is considered critically endangered by the International Union for Conservation of Nature. Here we apply molecular markers to analyze its population structure and find that habitat fragmentation owing to a natural barrier has resulted in strong genetic division of populations into two sectors, with no detectable migration between sites. Although effective population size estimates suggest low values for all populations, we found low levels of inbreeding and relatedness between individuals within populations. Moreover, C. arnoldi displays similar levels of genetic diversity to its sister species Calotriton asper, from which it separated around 1.5 million years ago and which has a much larger distribution range. Our extensive study shows that natural habitat fragmentation does not result in negative genetic effects, such as the loss of genetic diversity and inbreeding on an evolutionary timescale. We hypothesize that species in such conditions may evolve strategies (for example, special mating preferences) to mitigate the effects of small population sizes. However, it should be stressed that the influence of natural habitat fragmentation on an evolutionary timescale should not be conflated with anthropogenic habitat loss or degradation when considering conservation strategies
Role of Ox-PAPCs in the Differentiation of Mesenchymal Stem Cells (MSCs) and Runx2 and PPARγ2 Expression in MSCs-Like of Osteoporotic Patients
BACKGROUND: Mesenchymal stem cells (MSCs) can differentiate into osteoblasts and adipocytes and conditions causing bone loss may induce a switch from the osteoblast to adipocyte lineage. In addition, the expression of Runx2 and the PPARγ2 transcription factor genes is essential for cellular commitment to an osteogenic and adipogenic differentiation, respectively. Modified lipoproteins derived from the oxidation of arachidonate-containing phospholipids (ox-PAPCs: POVPC, PGPC and PEIPC) are considered important factors in atherogenesis. METHODOLOGY: We investigated the effect of ox-PAPCs on osteogenesis and adipogenesis in human mesenchymal stem cells (hMSCs). In particular, we analyzed the transcription factor Runx2 and the PPARγ2 gene expression during osteogenic and adipogenic differentiation in absence and in presence of ox-PAPCs. We also analyzed gene expression level in a panel of osteoblastic and adipogenic differentiation markers. In addition, as circulating blood cells can be used as a "sentinel" that responds to changes in the macro- or micro-environment, we analyzed the Runx2 and the PPARγ2 gene expression in MSCs-like and ox-PAPC levels in serum of osteoporotic patients (OPs). Finally, we examined the effects of sera obtained from OPs in hMSCs comparing the results with age-matched normal donors (NDs). PRINCIPAL FINDINGS: Quantitative RT-PCR demonstrated that ox-PAPCs enhanced PPARγ2 and adipogenic gene expression and reduced Runx2 and osteoblast differentiation marker gene expression in differentiating hMSCs. In OPs, ox-PAPC levels and PPARγ2 expression were higher than in NDs, whereas Runx2 was lower than in ND circulant MSCs-like. CONCLUSIONS: Ox-PAPCs affect the osteogenic differentiation by promoting adipogenic differentiation and this effect may appear involved in bone loss in OPs
- …