598 research outputs found

    Impact of shortened crop rotation of oilseed rape on soil and rhizosphere microbial diversity in relation to yield decline

    Get PDF
    Oilseed rape (OSR) grown in monoculture shows a decline in yield relative to virgin OSR of up to 25%, but the mechanisms responsible are unknown. A long term field experiment of OSR grown in a range of rotations with wheat was used to determine whether shifts in fungal and bacterial populations of the rhizosphere and bulk soil were associated with the development of OSR yield decline. The communities of fungi and bacteria in the rhizosphere and bulk soil from the field experiment were profiled using terminal restriction fragment length polymorphism (TRFLP) and sequencing of cloned internal transcribed spacer regions and 16S rRNA genes, respectively. OSR cropping frequency had no effect on rhizosphere bacterial communities. However, the rhizosphere fungal communities from continuously grown OSR were significantly different to those from other rotations. This was due primarily to an increase in abundance of two fungi which showed 100% and 95% DNA identity to the plant pathogens Olpidium brassicae and Pyrenochaeta lycopersici, respectively. Real-time PCR confirmed that there was significantly more of these fungi in the continuously grown OSR than the other rotations. These two fungi were isolated from the field and used to inoculate OSR and Brassica oleracea grown under controlled conditions in a glasshouse to determine their effect on yield. At high doses, Olpidium brassicae reduced top growth and root biomass in seedlings and reduced branching and subsequent pod and seed production. Pyrenochaeta sp. formed lesions on the roots of seedlings, and at high doses delayed flowering and had a negative impact on seed quantity and quality

    Reconstructing ‘the Alcoholic’: Recovering from Alcohol Addiction and the Stigma this Entails

    Get PDF
    Public perception of alcohol addiction is frequently negative, whilst an important part of recovery is the construction of a positive sense of self. In order to explore how this might be achieved, we investigated how those who self-identify as in recovery from alcohol problems view themselves and their difficulties with alcohol and how they make sense of others’ responses to their addiction. Semi-structured interviews with six individuals who had been in recovery between 5 and 35 years and in contact with Alcoholics Anonymous were analysed using Interpretative Phenomenological Analysis. The participants were acutely aware of stigmatising images of ‘alcoholics’ and described having struggled with a considerable dilemma in accepting this identity themselves. However, to some extent they were able to resist stigma by conceiving of an ‘aware alcoholic self’ which was divorced from their previously unaware self and formed the basis for a new more knowing and valued identity

    Management of cutaneous metastases using electrochemotherapy

    Get PDF
    Background. Cutaneous metastases may cause considerable discomfort as a consequence of ulceration, oozing, bleeding and pain. Electrochemotherapy has proven to be highly effective in the treatment of cutaneous metastases. Electrochemotherapy utilises pulses of electricity to increase the permeability of the cell membrane and thereby augment the effect of chemotherapy. For the drug bleomycin, the effect is enhanced several hundred-fold, enabling once-only treatment. The primary endpoint of this study is to evaluate the efficacy of electrochemotherapy as a palliative treatment. Methods. This phase II study is a collaboration between two centres, one in Denmark and the other in the UK. Patients with cutaneous metastases of any histology were included. Bleomycin was administered intratumourally or intravenously followed by application of electric pulses to the tumour site. Results. Fifty-two patients were included. Complete and partial response rate was 68% and 18%, respectively, for cutaneous metastases <3 cm and 8% and 23%, respectively, for cutaneous metastases >3 cm. Treatment was well-tolerated by patients, including the elderly, and no serious adverse events were observed. Conclusions. ECT is an efficient and safe treatment and clinicians should not hesitate to use it even in the elderly

    Comparison of Insertional RNA Editing in Myxomycetes

    Get PDF
    RNA editing describes the process in which individual or short stretches of nucleotides in a messenger or structural RNA are inserted, deleted, or substituted. A high level of RNA editing has been observed in the mitochondrial genome of Physarum polycephalum. The most frequent editing type in Physarum is the insertion of individual Cs. RNA editing is extremely accurate in Physarum; however, little is known about its mechanism. Here, we demonstrate how analyzing two organisms from the Myxomycetes, namely Physarum polycephalum and Didymium iridis, allows us to test hypotheses about the editing mechanism that can not be tested from a single organism alone. First, we show that using the recently determined full transcriptome information of Physarum dramatically improves the accuracy of computational editing site prediction in Didymium. We use this approach to predict genes in the mitochondrial genome of Didymium and identify six new edited genes as well as one new gene that appears unedited. Next we investigate sequence conservation in the vicinity of editing sites between the two organisms in order to identify sites that harbor the information for the location of editing sites based on increased conservation. Our results imply that the information contained within only nine or ten nucleotides on either side of the editing site (a distance previously suggested through experiments) is not enough to locate the editing sites. Finally, we show that the codon position bias in C insertional RNA editing of these two organisms is correlated with the selection pressure on the respective genes thereby directly testing an evolutionary theory on the origin of this codon bias. Beyond revealing interesting properties of insertional RNA editing in Myxomycetes, our work suggests possible approaches to be used when finding sequence motifs for any biological process fails

    Ribosomal oxygenases are structurally conserved from prokaryotes to humans

    Get PDF
    2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components1,2 and in the hydroxylation of transcription factors3 and splicing factor proteins4. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA5,6,7 and ribosomal proteins8 have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy9,10,11,12. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans8 raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone Nε-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases

    Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule

    Get PDF
    N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor's ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system

    Adjuvant Sorafenib for Renal Cell Carcinoma at Intermediate or High Risk of Relapse: Results From the SORCE Randomized Phase III Intergroup Trial

    Get PDF
    PURPOSE: SORCE is an international, randomized, double-blind, three-arm trial of sorafenib after surgical excision of primary renal cell carcinoma (RCC) found to be at intermediate or high risk of recurrence. / PATIENTS AND METHODS: We randomly assigned participants (2:3:3) to 3 years of placebo (arm A), 1 year of sorafenib followed by 2 years of placebo (arm B), or 3 years of sorafenib (arm C). The initial sorafenib dose was 400 mg twice per day orally, amended to 400 mg daily. The primary outcome analysis, which was revised as a result of external results, was investigator-reported disease-free survival (DFS) comparing 3 years of sorafenib versus placebo. / RESULTS: Between July 2007 and April 2013, we randomly assigned 1,711 participants (430, 642, and 639 participants in arms A, B, and C, respectively). Median age was 58 years, 71% of patients were men, 84% had clear cell histology, 53% were at intermediate risk of recurrence, and 47% were at high risk of recurrence. We observed no differences in DFS or overall survival in all randomly assigned patients, patients with high risk of recurrence, or patients with clear cell RCC only. Median DFS was not reached for 3 years of sorafenib or for placebo (hazard ratio, 1.01; 95% CI, 0.83 to 1.23; P = .95). We observed nonproportional hazards; the restricted mean survival time (RMST) was 6.81 years for 3 years of sorafenib and 6.82 years for placebo (RMST difference, 0.01 year; 95% CI, −0.49 to 0.48 year; P = .99). Despite offering treatment adaptations, more than half of participants stopped treatment by 12 months. Grade 3 hand-foot skin reaction was reported in 24% of participants on sorafenib. / CONCLUSION: Sorafenib should not be used as adjuvant therapy for RCC. Active surveillance remains the standard of care for patients at intermediate or high risk of recurrence after nephrectomy and is the appropriate control of our current international adjuvant RCC trial, RAMPART

    The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation

    Get PDF
    PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments

    Get PDF
    Many mammals are well adapted to surviving in extremely cold environments. These species have likely accumulated genetic changes that help them efficiently cope with low temperatures. It is not known whether the same genes related to cold adaptation in one species would be under selection in another species. The aims of this study therefore were: to create a compendium of mammalian genes related to adaptations to a low temperature environment; to identify genes related to cold tolerance that have been subjected to independent positive selection in several species; to determine promising candidate genes/pathways/organs for further empirical research on cold adaptation in mammals
    corecore