12,305 research outputs found

    Organics Substantially Reduce HO2 Uptake Onto Aerosols Containing Transition Metal ions

    Get PDF
    A HO2 mass accommodation coefficient of α = 0.23 ± 0.07 was measured onto sub-micron copper (II) doped ammonium sulphate aerosols at a relative humidity of 60 ± 3 %, at 293 ± 2 K and at an initial HO2 concentration of ~ 1 × 109 molecule cm-3 using an aerosol flow tube coupled to a sensitive Fluorescence Assay by Gas Expansion (FAGE) HO2 detection system. The effect upon the HO2 uptake coefficient γ of adding different organic species (malonic acid, citric acid, 1,2 diaminoethane, tartronic acid, ethylenediaminetetraacetic acid (EDTA) and oxalic acid) into the copper (II) doped aerosols was investigated. The HO2 uptake coefficient decreased steadily from the mass accommodation value to γ = 0.008 ± 0.009 when EDTA was added in a one-to-one molar ratio with the copper (II) ions, and to γ = 0.003 ± 0.004 when oxalic acid was added into the aerosol in a ten-to-one molar ratio with the copper (II). EDTA binds strongly to copper (II) ions potentially making them unavailable for catalytic destruction of HO2, and could also be acting as a surfactant or changing the viscosity of the aerosol. The addition of oxalic acid to the aerosol potentially forms low-volatility copper-oxalate complexes that reduce the uptake of HO2 either by changing the viscosity of the aerosol or causing precipitation out of the aerosol forming a coating. It is likely that there is a high enough oxalate to copper (II) ion ratio in many types of atmospheric aerosols to decrease the HO2 uptake coefficient. No observable change in the HO2 uptake coefficient was measured when the other organic species (malonic acid, citric acid, 1,2 diaminoethane and tartronic acid) were added in a ten-to-one molar ratio with the copper (II) ions

    Characterisation and improvement of j(O¹D) filter radiometers

    Get PDF
    Atmospheric O3 → O(1D) photolysis frequencies j(O1D) are crucial parameters for atmospheric photochemistry because of their importance for primary OH formation. Filter radiometers have been used for many years for in situ field measurements of j(O1D). Typically the relationship between the output of the instruments and j(O1D) is non-linear because of changes in the shape of the solar spectrum dependent on solar zenith angles and total ozone columns. These non-linearities can be compensated for by a correction method based on laboratory measurements of the spectral sensitivity of the filter radiometer and simulated solar actinic flux density spectra. Although this correction is routinely applied, the results of a previous field comparison study of several filter radiometers revealed that some corrections were inadequate. In this work the spectral characterisations of seven instruments were revised, and the correction procedures were updated and harmonised considering recent recommendations of absorption cross sections and quantum yields of the photolysis process O3 → O(1D). Previous inconsistencies were largely removed using these procedures. In addition, optical interference filters were replaced to improve the spectral properties of the instruments. Successive determinations of spectral sensitivities and field comparisons of the modified instruments with a spectroradiometer reference confirmed the improved performance. Overall, filter radiometers remain a low-maintenance alternative of spectroradiometers for accurate measurements of j(O1D) provided their spectral properties are known and potential drifts in sensitivities are monitored by regular calibrations with standard lamps or reference instruments

    The origin of [C II] 157 μm emission in a five-component interstellar medium : the case of NGC 3184 and NGC 628

    Get PDF
    With its relatively low ionization potential, C+ can be found throughout the interstellar medium (ISM) and provides one of the main cooling channels of the ISM via the [C II] 157 mu m emission. While the strength of the [C II] line correlates with the star formation rate, the contributions of the various gas phases to the [C II] emission on galactic scales are not well established. In this study we establish an empirical multi-component model of the ISM, including dense H II regions, dense photon dissociation regions (PDRs), the warm ionized medium (WIM), low density and G(0). surfaces of molecular clouds (SfMCs), and the cold neutral medium (CNM). We test our model on ten luminous regions within the two nearby galaxies NGC 3184 and NGC 628. on angular scales of 500-600 pc. Both galaxies are part of the Herschel. key program. KINGFISH,. and are complemented by a large set of ancillary ground-and space-based data. The five modeled phases together reproduce the observed [C II] emission quite well, overpredicting the total flux slightly (about 45%) averaged over all regions. We find that dense PDRs are the dominating component, contributing 68% of the [C II] flux on average, followed by the WIM and the SfMCs, with mean contributions of about half of the contribution from dense PDRs, each. CNM and dense H II regions are only minor contributors with less than 5% each. These estimates are averaged over the selected regions, but the relative contributions of the various phases to the [C II] flux vary significantly between these regions

    Matching Temporal Signatures of Solar Features to Their Corresponding Solar-Wind Outflows

    Get PDF
    The role of small-scale coronal eruptive phenomena in the generation and heating of the solar wind remains an open question. Here, we investigate the role played by coronal jets in forming the solar wind by testing whether temporal variations associated with jetting in EUV intensity can be identified in the outflowing solar-wind plasma. This type of comparison is challenging due to inherent differences between remote-sensing observations of the source and in-situ observations of the outflowing plasma, as well as travel time and evolution of the solar wind throughout the heliosphere. To overcome these, we propose a novel algorithm combining signal filtering, two-step solar-wind ballistic back-mapping, window shifting, and Empirical Mode Decomposition. We first validate the method using synthetic data, before applying it to measurements from the Solar Dynamics Observatory and Wind spacecraft. The algorithm enables the direct comparison of remote-sensing observations of eruptive phenomena in the corona to in-situ measurements of solar-wind parameters, among other potential uses. After application to these datasets, we find several time windows where signatures of dynamics found in the corona are embedded in the solar-wind stream, at a time significantly earlier than expected from simple ballistic back-mapping, with the best-performing in-situ parameter being the solar-wind mass flux

    OH Production from the Photolysis of Isoprene-derived Peroxy Radicals: Cross-sections, quantum yields and atmospheric implications

    Get PDF
    In environments with high concentrations of biogenic volatile organic compounds and low concentrations of nitrogen oxides (NOx = NO + NO2), significant discrepancies have been found between measured and modeled concentrations of hydroxyl radical (OH). The photolysis of peroxy radicals from isoprene (HO-Iso-O2) in the near ultraviolet represents a potential source of OH in these environments, yet has not been considered in atmospheric models. This paper presents measurements of the absorption cross-sections for OH formation (σRO2,OH) from the photolysis of HO-Iso-O2 at wavelengths from 310–362.5 nm via direct observation by laser-induced fluorescence of the additional OH produced following laser photolysis of HO-Iso-O2. Values of σRO2,OH for HO-Iso-O2 ranged from (6.0 ± 1.6) × 10-20 cm2 molecule-1 at 310 nm to (0.5 ± 0.15) × 10-20 cm2 molecule-1 at 362.5 nm. OH photodissociation yields from HO-Iso-O2 photolysis, ϕOH,RO2, were determined via comparison of the measured values of σRO2,OH to the total absorption cross-sections for HO-Iso-O2 (σRO2), which were obtained using a newly-constructed spectrometer. ϕOH,RO2 was determined to be 0.13 ± 0.037 at wavelengths from 310–362.5 nm. To determine the impact of HO-Iso-O2 photolysis on atmospheric OH concentrations, a modeling case-study for a high-isoprene, low-NOx environment (namely, the 2008 Oxidant and Particle Photochemical Processes above a South-East Asian Tropical Rainforest (OP-3) field campaign, conducted in Borneo) was undertaken using the detailed Master Chemical Mechanism. The model calculated that the inclusion of HO-Iso-O2 photolysis in the model had increased the OH concentration by only 1% on average from 10:00–16:00 local time. Thus, HO-Iso-O2 photolysis alone is insufficient to resolve the discrepancy seen between measured OH concentrations and those predicted by atmospheric chemistry models in such environments

    Production of HOâ‚‚ and OH radicals from near-UV irradiated airborne TiOâ‚‚ nanoparticles

    Get PDF
    The production of gas-phase hydroperoxyl radicals, HO2, is observed directly from sub-micron airborne TiO2 nanoparticles (80% anatase and 20% rutile formulation) irradiated by 300 – 400 nm radiation. The rate of HO2 production as a function of O2 pressure follows Langmuir isotherm behaviour suggesting O2 is involved in the production of HO2 following its adsorption onto the surface of the TiO2 aerosol. Reduction of adsorbed O2 by photogenerated electrons is likely to be the initial step followed by reaction with a proton produced via oxidation of adsorbed water with a photogenerated hole. The rate of HO2 production decreased significantly over the range of relative humidities between 8.7 and 36.9 %, suggesting further adsorption of water vapour inhibits HO2 production. The adsorption equilibrium constants were calculated to be: KO2 = 0.27 ± 0.02 Pa-1 and KH2O = 2.16 ± 0.12 Pa-1 for RH = 8.7%, decreasing to KO2 = 0.18 ± 0.01 Pa-1 and KH2O = 1.33 ± 0.04 Pa-1 at RH = 22.1%. The increased coverage of H2O onto the TiO2 aerosol surface may inhibit HO2 production by decreasing the effective surface area of the TiO2 particle and lowering the binding energy of O2 on the aerosol surface, hence shortening its desorption lifetime. The yield of HO2 for atmospheric levels of O2 and normalised for surface area and light intensity was found to be k′prod = (3.64 ± 0.04) × 10-3 HO2 molecule photon-1 at RH = 8.7%. This yield decreased to k′prod = (1.97 ± 0.03) × 10-3 molecule photon-1 as the RH was increased to 22.1%. Using this value, the rate of production of HO2 from TiO2 surfaces under atmospheric conditions was estimated to be in the range 5x104 – 1x106 molecule cm-3 s-1 using observed surface areas of mineral dust at Cape Verde, and assuming a TiO2 fraction of 4.5%. For the largest loadings of dust in the troposphere, the rate of this novel heterogeneous production mechanism begins to approach that of HO2 production from the gas-phase reaction of OH with CO in unpolluted regions.The production of gas-phase OH radicals could only be observed conclusively at high aerosol surface areas, and was attributed to the decomposition of H2O2 at the surface by photogenerated electrons

    SLOCLIM: a high-resolution daily gridded precipitation and temperature dataset for Slovenia

    Get PDF
    We present a new publicly available daily gridded dataset of maximum and minimum temperature and precipitation data covering the whole territory of Slovenia from 1950 to 2018. It represents the great variability of climate at the crossroads between the Mediterranean, Alpine and continental climatic regimes with altitudes between 0-2864ma.s.l. We completely reconstructed (quality control and gap filling) the data for the three variables from 174 observatories (climatological, precipitation and automatic stations) with the original records all over the country. A comprehensive quality control process based on the spatial coherence of the data was applied to the original dataset, and the missing values were estimated for each day and location independently. Using the filled data series, a grid of 1 x 1 km spatial resolution with 20 998 points was created by estimating daily temperatures (minimum and maximum) and precipitation, as well as their corresponding uncertainties at each grid point. In order to show the potential applications, four daily temperature indices and two on precipitation were calculated to describe the spatial distribution of (1) the absolute maximum and minimum temperature, (2) the number of frost days, (3) the number of summer days, (4) the intensity of precipitation and (5) the maximum number of consecutive dry days. The use of all the available information, the complete quality control and the high spatial resolution of the grid allowed for an accurate estimate of precipitation and temperature that represents a precise spatial and temporal distribution of daily temperatures and precipitation in Slovenia. The SLOCLIM dataset is publicly available at https://doi.org/10.5281/zenodo.4108543 and http://www.sloclim.eu (last access: 10 June 2021) and can be cited as Skrk et al. (2020)
    • …
    corecore