
Atmos. Meas. Tech., 9, 3455–3466, 2016
www.atmos-meas-tech.net/9/3455/2016/
doi:10.5194/amt-9-3455-2016
© Author(s) 2016. CC Attribution 3.0 License.

Characterisation and improvement of j (O1D) filter radiometers
Birger Bohn1, Dwayne E. Heard2,3, Nikolaos Mihalopoulos4,5, Christian Plass-Dülmer6, Rainer Schmitt7, and
Lisa K. Whalley2,3

1Institut für Energie und Klimaforschung IEK-8, Forschungszentrum Jülich, 52428 Jülich, Germany
2School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
3National Centre for Atmospheric Science, University of Leeds, Leeds, LS2 9JT, UK
4Department of Chemistry, University of Crete, Heraklion 71003, Greece
5Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Athens 11810, Greece
6Deutscher Wetterdienst, Meteorologisches Observatorium Hohenpeissenberg, 82383 Hohenpeissenberg, Germany
7Meteorologie Consult GmbH, Frankfurter Str. 28, 61462 Königstein, Germany

Correspondence to: Birger Bohn (b.bohn@fz-juelich.de)

Received: 10 March 2016 – Published in Atmos. Meas. Tech. Discuss.: 1 April 2016
Revised: 13 July 2016 – Accepted: 13 July 2016 – Published: 29 July 2016

Abstract. Atmospheric O3→O(1D) photolysis frequencies
j (O1D) are crucial parameters for atmospheric photochem-
istry because of their importance for primary OH forma-
tion. Filter radiometers have been used for many years for
in situ field measurements of j (O1D). Typically the rela-
tionship between the output of the instruments and j (O1D)
is non-linear because of changes in the shape of the solar
spectrum dependent on solar zenith angles and total ozone
columns. These non-linearities can be compensated for by a
correction method based on laboratory measurements of the
spectral sensitivity of the filter radiometer and simulated so-
lar actinic flux density spectra. Although this correction is
routinely applied, the results of a previous field comparison
study of several filter radiometers revealed that some correc-
tions were inadequate. In this work the spectral characterisa-
tions of seven instruments were revised, and the correction
procedures were updated and harmonised considering recent
recommendations of absorption cross sections and quantum
yields of the photolysis process O3→O(1D). Previous in-
consistencies were largely removed using these procedures.
In addition, optical interference filters were replaced to im-
prove the spectral properties of the instruments. Successive
determinations of spectral sensitivities and field comparisons
of the modified instruments with a spectroradiometer refer-
ence confirmed the improved performance. Overall, filter ra-
diometers remain a low-maintenance alternative of spectro-
radiometers for accurate measurements of j (O1D) provided
their spectral properties are known and potential drifts in sen-

sitivities are monitored by regular calibrations with standard
lamps or reference instruments.

1 Introduction

Atmospheric photolysis frequencies j (O1D) are first-order
rate constants that determine the formation rate of electroni-
cally excited O(1D) atoms in the photolysis of ozone:

O3+hν(λ≤ 340nm)−→ O(1D)+O2, (R1)

d[O1D]/dt = [O3]× j (O1D)−L[O1D]. (1)

[O1D] and [O3] denote gas-phase concentrations of O(1D)
and O3, respectively. L is the first-order total loss rate con-
stant of O(1D) by quenching and chemical reactions, mainly
by N2, O2 and H2O. Because these loss processes are fast,
very small steady-state concentrations � 1 cm−3 result for
O(1D) even around noontime:

[O1D] ≈ [O3]× j (O1D)/L. (2)

Nevertheless, O(1D) is extremely important for atmospheric
chemistry because it can form OH radicals in a reaction with
water vapour:

O(1D)+H2O−→ 2OH. (R2)
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The fraction of O(1D) reacting with H2O is typically around
10 % under tropospheric conditions. It depends on the con-
centration of water vapour, and L and can be calculated from
recommended rate constants of Reaction (R2) and of com-
peting quenching reactions (Sander et al., 2011).

Rohrer and Berresheim (2006) reported a linear relation-
ship between OH radical concentrations and j (O1D) in a
5-year data set of measurements at a rural continental site.
Even though ozone photolysis is the main primary source of
OH via Reaction (R2), this result is remarkable because OH
concentrations are influenced by a multitude of parameters
affecting chemical formation and destruction of OH depen-
dent for example on season, time of day and weather con-
ditions. The result by Rohrer and Berresheim (2006) can be
rationalised by a complex interaction between OH, HO2 and
NOx (=NO+NO2) and compensating for seasonal effects
of anthropogenic and biogenic OH reactants. Nevertheless,
these results highlight the importance of j (O1D) for the OH
concentration and thus for the self-cleaning capability of the
atmosphere. Accurate measurements of j (O1D) are therefore
desired.

The magnitude of atmospheric j (O1D) is determined by
the wavelength-dependent solar spectral actinic photon flux
density Fλ:

j (O1D)=
∫
σ ×φ×Fλ dλ. (3)

In this equation σ and φ are wavelength- and temperature-
dependent absorption cross sections of ozone and O(1D)
quantum yields, respectively. Fλ is strongly variable and
dependent on site-specific and atmospheric parameters,
most importantly on solar elevation, clouds, ozone column,
aerosol load, altitude and ground albedo.

Techniques for atmospheric measurements of j (O1D) and
other photolysis frequencies were discussed in a review by
Hofzumahaus (2006). Absolute techniques are spectrora-
diometry (spectral measurements of Fλ ideally utilising a
double monochromator) and chemical actinometry (chem-
ical change monitoring in suitable reactors). In blind in-
strument comparisons these methods gave consistent re-
sults for j (O1D) when currently recommended data of σ
and φ were used for the calculation according to Eq. (3)
(Hofzumahaus et al., 2004). More recently also single-
monochromator-based spectroradiometers that utilise pho-
todiode arrays (PDAs) or charge coupled devices (CCDs)
were employed for the measurement of photolysis frequen-
cies. However, for j (O1D) in particular and UV-B measure-
ments in general, these instruments require special care with
regard to stray light correction in both laboratory calibrations
and field measurements (Edwards and Monks, 2003; Kanaya
et al., 2003; Hofzumahaus et al., 2004; Jäkel et al., 2006,
2007; Thiel et al., 2008).

In an earlier radiometric approach Junkermann et al.
(1989) developed a filter radiometer (FR) for the measure-
ment of j (O1D). Wavelength separation and detection were

conducted with an interference filter and a solar-blind photo-
multiplier (PMT), respectively. This combination had a rela-
tive spectral sensitivity similar to the product σ×φ in Eq. (3).
Thus ideally the output of the device was proportional to
j (O1D). For calibration the output signal of the filter ra-
diometer was compared with j (O1D) from a chemical acti-
nometer. The method worked satisfactory in a limited range
of solar zenith angles where the precision of the actinometer
was sufficient. However, at χ > 60◦ deficiencies of the spec-
tral properties of the filter radiometer were expected to lead
to a departure from linearity.

A method to compensate for these deviations was de-
scribed by Bohn et al. (2004) based on measurements of the
spectral sensitivity of a filter radiometer, simulated actinic
flux spectra, and the molecular data σ and φ of ozone. Cor-
rection factors as a function of total ozone columns (tO3 )
and solar zenith angles (χ ) were derived aiming to lin-
earise the dependence of the output signal on j (O1D). This
correction worked satisfactory at χ < 80◦ and tO3 = 315–
388 DU for the investigated instrument based on a compari-
son with a reference spectroradiometer. A similar method is
currently applied for most j (O1D) filter radiometers in use
with instrument-specific correction factors.

In a comparison within the European project ACCENT
(Atmospheric Composition Change – The European Net-
work of Excellence), a number of j (O1D) filter radiometers
were operated simultaneously and compared with a refer-
ence spectroradiometer (Bohn et al., 2008). Generally, the
results were satisfactory, but for some instruments the correc-
tion factors were apparently deficient. These correction fac-
tors were supplied with the instruments at the time of their
purchase in the 1990s, but the underlying spectral proper-
ties, molecular parameters and simulated spectra were not
reported in detail, making it difficult to reproduce the correc-
tions. Moreover, after years of operation the spectral prop-
erties of the instruments may have changed, and the recom-
mendations of the O(1D) quantum yields have also changed
during the last 20 years (Hofzumahaus et al., 2004). Based on
the field comparison alone, no improvement of the parame-
terised factors was feasible.

In this work, the spectral sensitivities of six j (O1D) filter
radiometers that took part in the previous ACCENT compar-
ison were determined in the laboratory, and updated correc-
tion factors were derived to reevaluate the j (O1D) field data.
Moreover, to improve the spectral properties of all instru-
ments, interference filters were exchanged, spectral charac-
terisation procedures were repeated and new correction fac-
tors were calculated for the modified instruments. Successive
field comparisons with a spectroradiometer reference were
then consulted to verify the quality of upgraded instruments.
These activities already date back several years and were not
reported at the time because the increasing use of detector
array spectroradiometers was expected to gradually displace
filter radiometers. However, as mentioned above, the deter-
mination of j (O1D) with detector array spectroradiometers
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Table 1. j (O1D) filter radiometers investigated and modified within this work (instrument number, institution and references). Abbreviations:
UOC (University of Crete, Environmental Chemistry Laboratory), FZJ (Forschungszentrum Jülich, Institut für Energie und Klimaforschung),
ULE (University of Leeds, School of Chemistry), DWD (Deutscher Wetterdienst, Meteorologisches Observatorium Hohenpeissenberg).

Instrument Institution References

FR 102 UOC Gerasopoulos et al. (2006); Bohn et al. (2008); Gerasopoulos et al. (2012); Benas et al. (2013)
FR 110 FZJ Bohn et al. (2006)
FR 111 ULE Bohn et al. (2008); Hewitt et al. (2010); Whalley et al. (2010); Carpenter et al. (2010); Whalley et al. (2011);

Vaughan et al. (2012); Edwards et al. (2013); Whalley et al. (2015)
FR 119 FZJ Bohn et al. (2008)
FR 120 DWD Handisides et al. (2003); Berresheim et al. (2003); Rohrer and Berresheim (2006); Bohn et al. (2008);

Decesari et al. (2014)
FR 126 DWD Handisides et al. (2003); Berresheim et al. (2003); Rohrer and Berresheim (2006); Bohn et al. (2008);

Decesari et al. (2014)
FR 141a FZJ Hens et al. (2014); Oswald et al. (2015)
FR 002a,b FZJ Bohn et al. (2004, 2006); Zhang et al. (2008); Berresheim et al. (2013, 2014)

a Not operative during the ACCENT comparison. b Instrument from an older batch, not modified in this work.

is not straightforward and also requires comparisons with
reference instruments for validation. Moreover, a number of
recent publications indicate that many filter radiometers are
still in use. Therefore an updated account of their perfor-
mances appears to be appropriate.

2 Experimental

2.1 Filter radiometers and reference instrument

The j (O1D) FR which took part in this project were similar
in construction and were purchased from Meteorologie Con-
sult, Germany. A list with serial numbers is given in Table 1.
The instruments came from four institutions within Europe
and were in the past deployed in temporary field campaigns
as well as for stationary long-term measurements. With one
exception (FR 141) the instruments all participated in the
ACCENT comparison (Bohn et al., 2008). Two further FZJ
instruments of an older series (FR 001 and FR 002) were
not operated during ACCENT because of electronic faults,
but the spectral properties of FR 002 had already been deter-
mined and approved previously (Bohn et al., 2004).

A technical description of the filter radiometers was given
by Junkermann et al. (1989) and Bohn et al. (2004). Basically
the instruments are designed for 2π sr reception of actinic ra-
diation with a quartz-dome diffuser and horizontal shadow
ring, an interference filter (Schott, MAZ 8, 300 nm) and a
solar-blind PMT (Hamamatsu, R-759) for radiation detec-
tion. These components are assembled in a water-tight hous-
ing together with a current amplifier and a heating device.
The latter, together with a drying-agent cartridge, prevent
condensation of moisture. The outdoor units were connected
to external power and high-voltage supplies via 10–20 m ca-
bles, and the currents were converted to recordable analogue
voltage signals (0–5 V). Figure 1 shows an image of the com-

Figure 1. Impression of filter radiometers operated side by side dur-
ing the ACCENT intercomparison (Bohn et al., 2008).

pact filter radiometers during a field comparison. Raw data
are usually logged with high time resolution to cover rapid
changes of j (O1D) under cloudy conditions. In this work
data logging for the field measurements was conducted with
a 16 bit data logger (ADAM 4017) with a 5 s time resolution.

The j (O1D) reference instrument used in this work was
a calibrated spectroradiometer that was described in detail
previously by Hofzumahaus et al. (1999) and Bohn et al.
(2008). Briefly it is composed of a well-characterised quartz
receiver (Meterologie Consult GmbH) similar to those used
with the filter radiometers, a quartz fibre, a double monochro-
mator (Bentham DTM 300) and a UV-sensitive photomulti-
plier (EMI). The scanning range was confined to 280–420 nm
at a wavelength resolution of 1 nm. The corresponding scan-
ning times were about 120 s. Accuracy of the actinic flux de-
termination is estimated to be 6 %. For the calculation of pho-
tolysis frequencies the same recommended molecular data of
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ozone were used as previously (Bohn et al., 2008). Because
the time resolution of the spectroradiometer is poorer than
that of the filter radiometers, filter radiometer data were aver-
aged over 30 s intervals during which the spectroradiometer
was scanning the respective UV-B wavelength range.

2.2 Laboratory characterisation

For a quantitative evaluation of the filter radiometer data,
the relative spectral sensitivities Drel of the instruments in
a range 280–500 nm are required. This wide spectral range
is necessary because of an imperfect blocking of interfer-
ence filters resulting in unwanted signal contributions, as ex-
plained in more detail in Sect. 3.1 and 3.2. The spectral sensi-
tivities were determined in the laboratory. However, this was
not feasible with the fully assembled instruments for two rea-
sons. Firstly, the transmittance of a typical quartz diffuser is
too small for the available tunable laboratory light source.
Secondly, the dynamic range of the internal photocurrent am-
plifier is insufficient for the spectral characterisation where
a 5–6-orders-of-magnitude sensitivity range should be cov-
ered. For the laboratory measurements the interference filters
(including collimator) and PMTs of the instruments were re-
moved and inserted into a substitute housing of identical ge-
ometric dimensions where the diffuser dome was replaced
by a frosted quartz plate. At normal incidence the transmit-
tance of the quartz plate was greater by a factor of about 200
with a minor wavelength dependence (±5 %) in the investi-
gated spectral range. Moreover, the substitute allowed direct
measurements of the PMT photocurrents with a current-to-
voltage amplifier with sufficient dynamic range (Bentham,
228 A), while the high voltages for the PMTs were produced
by the original supply units of the filter radiometers.

The setup of the measurements is depicted in Fig. 2. A
high-pressure Xe arc lamp was used as a light source. This
type of lamp emits a high-intensity, almost-continuous spec-
trum in a range 200–1200 nm. A mirror reflecting mainly the
UV and part of the VIS radiation reduced the thermal load
for the components. After passing an optical cut-off filter
(Schott, WG 280), the radiation was focussed into a quartz
fibre connected to a double monochromator (Bentham, DTM
300). The use of a double monochromator ensured negli-
gible stray light, and the cut-off filter prevented the detec-
tion of UV radiation of higher orders. A second fibre guided
the dispersed radiation from the monochromator exit towards
the frosted quartz plate of the filter radiometer substitute.
To avoid saturation effects, maximum PMT photocurrents
were limited to about 1 µA. With the selected slit width the
monochromatic radiation had a full width at half maximum
(FWHM) of about 0.5 nm. The line shape and the wavelength
positions were checked with a low-pressure mercury lamp.

Before and after recording a series of typically 50 spectra
with the FR substitutes, a photodiode with known spectral
sensitivity (Hamamatsu, S 1227-1010 BQ) was used as a ref-
erence detector to obtain calibrated spectral distributions of

UV mirror 

Xe arc lamp 

Double monochromator 

Quartz lens 
Quartz fibre 

Quartz fibre 

FR substitute 
or photodiode 

HV 

A  mplifier /data logger 

Filter Quartz plate 
Quartz lens 

Figure 2. Scheme of the laboratory setup for spectral sensitivity
measurements.

the radiation produced by the lamp–monochromator combi-
nation (Fig. 2). The ratios of the background-corrected, aver-
aged substitute and reference spectra were then normalised to
their maxima to obtain the relative spectral sensitivities Drel
of the filter radiometers.

For most instruments PMT hysteresis effects were ob-
served; i.e. after exposure to higher levels of radiation, dark
currents were decreased significantly and hardly recovered
during the period of a scan (≈ 2 min). To avoid the hystere-
sis effects, the scanning range was split into two parts, which
were examined successively, intermitted by the photodiode
measurements. The first part typically covered a wavelength
range 280–325 nm, where photocurrents were great enough
to be virtually unaffected by hysteresis. The second part of
the scanning range covered a range 320–500 nm. At the be-
ginning of this range photocurrents were much greater than
the dark currents but too small to produce any hysteresis. The
approach was confirmed by consistent results in the overlap-
ping parts of the two scanning ranges.

3 Results and discussion

3.1 Spectral sensitivities

Results of the spectral characterisations are displayed in
Fig. 3, where theDrel of the original instruments are shown in
linear and semilogarithmic representations. The upper panel
shows similar, narrow peaks at around 299 nm with FWHMs
of around 8.5 nm. The lower panel reveals residual sensitivi-
ties of the order of 10−5 in a range up to 500 nm. The reason
for the residual sensitivities are insufficient blockings of the
interference filters combined with typical sensitivities of the
solar-blind PMTs of 1–3 % in a range 400–500 nm compared
to the sensitivities around 300 nm (measured separately for
some PMTs after removing the filters). As will be shown in
the next section, even such small residual Drel in a range up
to 500 nm can affect the performance of the instruments un-
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Figure 3. Relative spectral sensitivities Drel of seven j (O1D) fil-
ter radiometers in their original setup. The upper panel shows the
main sensitivity peaks on a linear scale. The lower panel depicts an
extended wavelength range in a semi-logarithmic plot indicating a
residual sensitivity around 10−5 above 350 nm.

der low-sun conditions. The secondary peak around 340 nm
found for all instruments is a feature of the MAZ 8 inter-
ference filter, which is in line with the typical transmittance
curve provided by the manufacturer.

In a first approach to improve the properties of the filter
radiometers, an interference filter (Schott, KMD 12) that re-
mained of an older prototype radiometer was inserted into
FR 110. This exchange produced a stronger blocking above
350 nm and a somewhat greater FWHM of the transmission
curve (≈ 11 nm), resulting in an improvement of the instru-
ment performance as intended. Consequently, to be able to
fit up more instruments, a batch of new interference filters
with a central wavelength of 300 nm, a FWHM of 10 nm and
certified blockings < 5× 10−6 were purchased (Filtrop AG,
300BP10, no. 439100).

The Drel after the exchange of the interference filters are
plotted in Fig. 4. Compared to Fig. 3, transmission peaks
around 300 nm were about 2 nm broader, and sensitivities
above 350 nm were typically below 10−6. Again all Drel ex-
hibited a very similar shape except for FR 110 where the
KMD 12 filter was maintained because the transmission peak
turned out to be almost ideally situated as will be shown
in the next section. As also shown in Fig. 4, the spectral
properties with the new interference filters were very simi-
lar to those of FR 002, which have been described previously
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Figure 4. Relative spectral sensitivities Drel as in Fig. 3 after ex-
change of interference filters: peaks are slightly broader (upper
panel), and sensitivities above 350 nm now range around 10−6 or
less because of better blockings (lower panel). For FR 110 an in-
terference filter of a different batch was employed (see text). The
dashed curve shows the spectral sensitivity of FR 002 from a previ-
ous study (Bohn et al., 2004).

(Bohn et al., 2004) and apparently contained a different in-
terference filter in the first place. Consequently, FR 002 was
not modified.

3.2 Correction factors

The concept to use the spectral sensitivities Drel and sim-
ulated actinic flux density spectra to derive correction fac-
tors f (χ, tO3) dependent on total ozone columns and solar
zenith angles was described in detail by Bohn et al. (2004).
Ozone columns and solar zenith angles are the main parame-
ters that determine the shape of the actinic flux density spec-
tra in the wavelength range relevant for O(1D) formation
(≈ 300–330 nm). Other atmospheric parameters like aerosol
load and clouds may strongly scale the spectra but in a first
approximation do not influence their shape in this narrow
wavelength range. In addition, ambient temperature influ-
ences j (O1D) because absorption cross sections and quan-
tum yields in Eq. (3) are temperature-dependent. However,
temperature has virtually no influence on spectral actinic flux
densities. The temperature effects can therefore be separated
and accounted for by an additional factor b(χ, tO3 ,T ) (Bohn
et al., 2004). Consequently, the conversion of filter radiome-
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ter voltages U to j (O1D) is composed of three factors:

j (O1D)= A0× b(χ, tO3 ,T )× f (χ, tO3)×U. (4)

A0 is an absolute calibration factor of dimension s−1 V−1 de-
fined for selected reference conditions, in this case χ = 30◦,
tO3 = 350 DU and T = 298 K. The other factors are dimen-
sionless and refer to these reference conditions. Based on
the measured spectral sensitivities, A0 can be determined
experimentally using an irradiance standard (Bohn et al.,
2004). In addition this requires a characterisation of the an-
gular response of the optical receivers, and specific adjust-
ments caused by the vertical extension of actinic radiation
receivers (Hofzumahaus et al., 1999). A second, more di-
rect approach is to determine A0 from parallel measurements
with a reference instrument under field conditions. In this
work, a spectroradiometer was used as a reference and A0
was obtained from linear regressions of the corresponding
j (O1D) with the products f (χ, tO3)×U . Using a spectrora-
diometer has the advantage that temperature effects can be
neglected, while with a chemical actinometer the gas-phase
temperature inside the reactor has to be taken into account
by the factor b(χ, tO3 ,T ) (Hofzumahaus et al., 2004; Bohn
et al., 2004). However, b(χ, tO3 ,T ) is not instrument-specific
and merely describes the temperature dependence of j (O1D)
(Bohn et al., 2004). For the instrument characterisations of
this work the temperature dependence plays no role and will
be neglected in the following. On the other hand, for ap-
plications where the j (O1D) are used as rate constants in
a chemical model, ambient temperatures should be consid-
ered. It was checked that the previously evaluated parametri-
sation of b(χ, tO3 ,T ) remains valid within about 1 % (Bohn
et al., 2004). Even though a different reference temperature
of 295 K was used, a normalisation to any other reference
temperature is straightforward.

The factors f (χ, tO3) were calculated using the experi-
mentally determined Drel and simulated solar actinic flux
density spectra according to the following equation:

f (χ, tO3)=

∫
σ ×φ×Fλdλ∫
Drel×Fλdλ

×

∫
Drel×F

◦
λ dλ∫

σ ×φ×F ◦λ dλ
. (5)

Here σ and φ are the molecular ozone data at the selected
reference temperature of 298 K that were taken from the lit-
erature (Malicet et al., 1995; Matsumi et al., 2002). F ◦λ refers
to a reference spectrum at χ = 30◦ and tO3 = 350 DU. All
spectra were simulated for clear-sky conditions using the
radiation transfer models TUV (Tropospheric Ultraviolet–
Visible) 4.3 and TUV 5.2 (Madronich and Flocke, 1997)
taking the implemented standard ozone concentration profile
(scaled to the desired total column), standard clean continen-
tal aerosol (aerosol optical depth (AOD)= 0.235 at 550 nm,
single scatter albedo (SSA)= 0.99, α = 1.0), zero ground
albedo, zero altitude and a spectral resolution of 1 nm. The
different TUV model versions produced insignificant differ-
ences in the correction factors (< 1 %). The same applies
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Figure 5. Correction factors f (χ, tO3) according to Eq. (5) for all
FR instruments as a function of solar zenith angle at a fixed total
ozone column of 350 DU. Upper and lower panels show correction
factors for old and new interference filters, respectively.

for a shift from vacuum wavelengths (TUV standard) to in-
air wavelengths at 1000 hPa pressure. For practical reasons,
a matrix of 46× 26 spectra was utilised covering a range
χ = 0–90◦ and tO3 = 100–600 DU. From these spectra, look-
up tables of correction factors were produced for each fil-
ter radiometer. Correction factors for actual field conditions
were then extracted with a 2-D interpolation algorithm using
solar zenith angles and ozone columns as input.

Examples of f (χ, tO3) at a constant ozone column are
shown in Fig. 5. For all filter radiometers the correction
factors show a significant variation with solar zenith angle.
However, with the new interference filters the factors peak
at greater χ and in most cases exhibit a weaker dependence
compared to the old filters, as intended. For FR 110 an even
smaller variation was obtained indicating an almost ideal
spectral sensitivity by the use of the KMD 12 filter. Figure 6
shows examples of f (χ, tO3) at a constant solar zenith an-
gle. For the new interference filters the ozone column depen-
dence is significantly smaller, which means that the correc-
tion becomes less dependent on the accuracy of the ozone
column input. Again for FR 110 the dependence is conve-
niently weaker and with opposite sign.

In order to understand the differences produced by old and
new interference filters, simulated action spectra of ozone
photolysis and those of a typical instrument (FR 141) were
consulted. Figure 7 shows three examples of spectral pho-
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Figure 6. Correction factors f (χ, tO3) according to Eq. (5) for all
FR instruments as a function of total ozone column at a fixed solar
zenith angle of 60◦. Upper and lower panels show correction factors
for old and new interference filters, respectively.

tolysis frequencies at different solar zenith angles where the
integrals underneath the black curves correspond to j (O1D).
Also plotted are the productsDrelFλ for old and new interfer-
ence filters that were scaled to corresponding integrals. Ob-
viously, the spectral match is improved upon replacement of
the interference filter. Moreover, for the largest solar zenith
angle, a significant contribution from a spectral range around
450 nm becomes evident for the old configuration of FR 141.
This is caused by the insufficient blocking of the old interfer-
ence filters and is expected to affect the quality of the correc-
tions when the shapes of natural spectra deviate from those in
the simulations. Such deviations are clearly more likely in an
extended wavelength range, caused for example by the influ-
ence of clouds or aerosols. Obviously, the correction factors
can compensate for even a significant spectral mismatch as in
the case of the old interference filters. However, the stronger
the mismatch, the more dependent the validity of the correc-
tion factors become on the agreement of simulated spectra
with the actual solar spectra. Figures 5 and 6 indicate that
the optimum interference filter would have properties some-
where between the new Filtrop and the re-used Schott KMD
12 with a peak transmittance closer to that of the KMD 12.

Sensitivity tests were made to estimate the influence of
various TUV model parameters and atmospheric conditions
on the correction factors. The upper and lower panels of
Fig. 8 show ratios of correction factors fT/f as a function
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Figure 7. Examples of TUV simulated action spectra for three dif-
ferent solar zenith angles of 30◦ (upper panel), 60◦ (middle panel)
and 80◦ (lower panel) at a total ozone column of 350 DU. The
j (O1D) correspond to the integrals underneath the black curves.
DrelFλ curves, scaled for matching integrals, correspond to old and
new spectral sensitivities of FR 141 in red and blue, respectively.
Note that the scales in the upper/middle and the lower panel differ
by 2 orders of magnitude and that the wavelength range of the lower
panel was extended to indicate the secondary peak in the red curve
around 450 nm.

of solar zenith angle for old and new interference filters of
FR 141, respectively. The f denote the normal correction
factors f (χ, tO3) described in the last paragraph. The fT
were test factors obtained by changing specific parameters
in the TUV model identified by three-letter acronyms. In
model runs denoted RES the spectral resolution of the ac-
tinic flux density spectra was increased from 1.0 to 0.5 nm.
The stronger dependence on spectral resolution for the old
configuration is caused by the sharper edges of the sensitiv-
ity peak (Fig. 3). Obviously, for the new setup a resolution
of 1.0 nm is sufficient. ALT denotes simulations assuming an
altitude of 3000 m instead of sea level, representing a high
mountain site. In ALB model runs the ground albedo was in-
creased from 0.0 to 1.0, simulating the maximum possible
effect of a fresh snow cover. It should be noted that upward
radiation is not considered here, but the effect of increased
radiation that is backscattered by the atmosphere is included.

www.atmos-meas-tech.net/9/3455/2016/ Atmos. Meas. Tech., 9, 3455–3466, 2016



3462 B. Bohn et al.: j (O1D) filter radiometers

     
0.90

0.95

1.00

1.05

1.10
f T

 / 
f

        RES          ALT          ALB          AOD          COD             

       RES   
       ALT   
       ALB   
       AOD   
       COD   

0 20 40 60 80

χ / deg

0.90

0.95

1.00

1.05

1.10

f T
 / 

f
tO3 = 350 DU

tO3 = 350 DU

        RES          ALT          ALB          AOD          COD             

       RES   
       ALT   
       ALB   
       AOD   
       COD   
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AOD represents polluted conditions with an aerosol optical
depth of 1.0 instead of 0.2. Finally, in cloud optical depth
(COD) model runs a stratus cloud with an optical thickness of
20 was implemented, corresponding to fairly dimmed over-
cast conditions. Generally, these modifications had moder-
ate < 10 % influence on correction factors and only towards
large solar zenith angles. Nevertheless, the advantage of the
new interference filters is obvious because variations are sig-
nificantly reduced. The corrections of the modified instru-
ments should therefore be more robust towards changes of
atmospheric conditions during field measurements.

3.3 Field comparisons

3.3.1 Re-evaluation of the 2005 ACCENT comparison

The j (O1D) filter radiometer results of the previous AC-
CENT comparison were reproduced in Fig. 9. Ratios of
j (O1D) from filter radiometers and the spectroradiometer
reference (SR) were plotted as a function of solar zenith an-
gles. At that time, the correction factors were applied by the
participants by their usual evaluation routines. Moreover, the
calibration factors A0 determined in the ACCENT compari-
son were already applied, explaining ratios close to unity at
small solar zenith angles. Part of the scatter of the ratios at all
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Figure 9. Reproduction of a part of Fig. 15 from Bohn et al. (2008)
with the j (O1D) filter radiometer results of the ACCENT compari-
son. The ratios of j (O1D) from the filter radiometers and the spec-
troradiometer reference were plotted as a function of solar zenith
angles after application of correction factors f by the participants
and of calibration factors A0 from the comparison. Red data points
indicate values below 10 % of maximum values (2.8× 10−5 s−1).
Measurement period: 1–12 June 2005.
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Figure 10. Ratios of photolysis frequencies as in Fig. 9 using up-
dated correction factors f based on spectral sensitivities of the
original instruments with old interference filters determined in this
work.

solar zenith angles can be attributed to insufficient synchro-
nisation of the measurement techniques, in particular under
conditions of broken clouds. However, more systematic de-
viations at larger χ were attributed to potential deficiencies
of the correction factors (Bohn et al., 2008).

Figure 10 shows the same data as in Fig. 9 except that
the updated correction factors determined in this work were
applied (original instruments, old interference filters). Apart
from FR 126 where changes are minor, improvements are
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Figure 11. Ratios of photolysis frequencies of subsequent compar-
isons as a function of solar zenith angles after the exchange of inter-
ference filters. For direct comparison red data points indicate values
below 2.8×10−6 s−1 as in Fig. 10. Different 3–8-day measurement
periods are indicated explaining different ranges of solar zenith an-
gles and number of data points.

apparent in all cases, in particular towards large solar zenith
angles; i.e. the performances were significantly improved by
the spectral characterisations and the consistent use of molec-
ular ozone data in the calculation of correction factors and of
j (O1D) from the spectroradiometer. The quality of the data
of all instruments is now very similar and considered satis-
factory. It should be noted that the type of representation in
Figs. 9 and 10 accentuates small absolute differences in par-
ticular for j (O1D) where values go down strongly with in-
creasing solar zenith angle. The colour coding indicates that
deviations > 10 % mainly affect data where j (O1D) is less
than 10 % of typical noontime summer values at Jülich. Gen-
erally, measurements down to solar zenith angles of about
80◦ are clearly feasible with these instruments. This result
is in agreement with a previous evaluation of FR 002 (Bohn
et al., 2004). The updated correction factors of the original
configurations were transferred to the instrument owners for
optional reanalysis of data obtained before the exchange of
the interference filters. For convenience, look-up tables and
parameterisations of correction factor were supplied.

3.3.2 Performance of modified instruments

Ratios of j (O1D) from the modified filter radiometers and
the spectroradiometer are plotted in Fig. 11. The spectral
characterisations and successive field comparisons were not
made simultaneously for all instruments. Rather there were
four measurement periods between spring and autumn where
two instruments were processed each. Accordingly, unless
the same dates are indicated in the figures, no direct compari-
son of the data is possible. Nevertheless, it is apparent that all
instruments perform satisfactory and exhibit a small scatter
towards large solar zenith angels. While compared to Fig. 10
a smaller scatter is expected theoretically as explained in the
previous section, the improvement is hard to prove experi-
mentally given different measurement periods and weather
conditions. At least it is safe to say that there is no deterio-
ration of the performances and that improvements are most
likely. Also included in Fig. 11 are results of FR 141 and FR
002 that were not examined during ACCENT but show simi-
lar data quality in the successive comparisons. The correction
factors and theA0 from the renewed comparisons were again
transferred to the instrument owners for the analysis of data
obtained after the exchange of the interference filters.

After the modifications in 2006, the different instruments
were implemented in various projects, as partly reflected in
the publication list in Table 1. All instruments are still in
use, and repeated recalibrations have so far given no indi-
cation that spectral properties change with time. However,
care must be taken that housings remain in sound condition
and drying agents are replaced regularly. A0 factors typically
show slight drifts, but neither direction nor magnitude are
predictable. For example, in a recalibration in late 2015, filter
radiometers FR 120 and FR 126 merely showed −7 % drifts
in A0 calibration factors after almost 10 years of continu-
ous operation at Hohenpeissenberg Observatory. Apparently
there is no significant degradation of interference filters or
PMT cathodes, even after many years of long-term operation.
However, it should be noted that the electronics of FR 120
was repaired in mid-2007, which caused a 25 % step in sig-
nal ratios of FR 120 and FR 126. These ratios were measured
regularly at the site with both instruments looking upwards.
Afterwards the ratios gradually decreased again and in 2015
accidentally reached the same values as obtained in 2006.
Of course, A0 drifts can also be caused by fluctuations of
PMT high-voltage supplies. It is therefore recommended to
monitor or regularly control these high voltages. Moreover,
regular comparisons with a reference instrument should be
performed for instruments that are used for long-term mea-
surements. Alternatively, a relative drift of A0 can be moni-
tored using suitable, highly stable calibration lamps. For lim-
ited field campaigns, calibrations or comparisons before and
after the deployment are recommended. Finally, under clear-
sky conditions with low, assessable aerosol load, radiative
transfer calculations can also serve as a reference. At least
such comparisons can reveal serious problems if measured
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data turn out to be exceptionally low or high. Taking these
provisions into account, filter radiometer measurements of
j (O1D) can be classified as reliable and of high quality.

4 Conclusions

j (O1D) filter radiometers are instruments with clear ad-
vantages regarding convenience and time resolution but re-
quire thorough characterisation and regular calibrations. In
this work seven commonly used instruments from the same
manufacturer were examined and upgraded. It was shown
that spectral sensitivity measurements covering 5–6 orders
of magnitude are a prerequisite for the evaluation of reli-
able correction factors that compensate for the dependence
of signal outputs on solar zenith angles and ozone columns.
Moreover, the quality of the interference filters is important
to contain these correction factors in useful ranges. On the
other hand, a single spectral characterisation is apparently
sufficient to derive correction factors that are applicable for
many years. Besides these corrections, absolute calibrations
that require the availability of a reference instrument like a
double-monochromator-based spectroradiometer or a chem-
ical actinometer remain necessary. These calibrations ensure
that the measured data are accurate, in particular under con-
ditions of small solar zenith angles when j (O1D) is high and
important, e.g. for predictions of noontime OH radical con-
centrations and the atmospheric oxidising capacity. The com-
plementary correction factors gain significance under condi-
tions with low sun when j (O1D) is getting smaller, which is
important, e.g. for an accurate assessment of ozone photol-
ysis compared to other primary radical sources like HNO2
or ClNO2 photolysis in the early morning. Overall, filter ra-
diometers are suitable to accurately measure j (O1D) in a
wide dynamic range. In this work previously described de-
ficiencies of the investigated instruments were examined and
widely removed. However, these deficiencies are considered
moderate and require no major revision of previous work
caused by incorrect j (O1D).

5 Data availability

The data presented in this paper are available on request from
the corresponding author.
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