4,871 research outputs found
Virtual patients design and its effect on clinical reasoning and student experience : a protocol for a randomised factorial multi-centre study
Background
Virtual Patients (VPs) are web-based representations of realistic clinical cases. They are proposed as being an optimal method for teaching clinical reasoning skills. International standards exist which define precisely what constitutes a VP. There are multiple design possibilities for VPs, however there is little formal evidence to support individual design features. The purpose of this trial is to explore the effect of two different potentially important design features on clinical reasoning skills and the student experience. These are the branching case pathways (present or absent) and structured clinical reasoning feedback (present or absent).
Methods/Design
This is a multi-centre randomised 2x2 factorial design study evaluating two independent variables of VP design, branching (present or absent), and structured clinical reasoning feedback (present or absent).The study will be carried out in medical student volunteers in one year group from three university medical schools in the United Kingdom, Warwick, Keele and Birmingham. There are four core musculoskeletal topics. Each case can be designed in four different ways, equating to 16 VPs required for the research. Students will be randomised to four groups, completing the four VP topics in the same order, but with each group exposed to a different VP design sequentially. All students will be exposed to the four designs. Primary outcomes are performance for each case design in a standardized fifteen item clinical reasoning assessment, integrated into each VP, which is identical for each topic. Additionally a 15-item self-reported evaluation is completed for each VP, based on a widely used EViP tool. Student patterns of use of the VPs will be recorded.
In one centre, formative clinical and examination performance will be recorded, along with a self reported pre and post-intervention reasoning score, the DTI. Our power calculations indicate a sample size of 112 is required for both primary outcomes
Ram pressure feeding super-massive black holes
When supermassive black holes at the center of galaxies accrete matter
(usually gas), they give rise to highly energetic phenomena named Active
Galactic Nuclei (AGN). A number of physical processes have been proposed to
account for the funneling of gas towards the galaxy centers to feed the AGN.
There are also several physical processes that can strip gas from a galaxy, and
one of them is ram pressure stripping in galaxy clusters due to the hot and
dense gas filling the space between galaxies. We report the discovery of a
strong connection between severe ram pressure stripping and the presence of AGN
activity. Searching in galaxy clusters at low redshift, we have selected the
most extreme examples of jellyfish galaxies, which are galaxies with long
tentacles of material extending for dozens of kpc beyond the galaxy disk. Using
the MUSE spectrograph on the ESO Very Large Telescope, we find that 6 out of
the 7 galaxies of this sample host a central AGN, and two of them also have
galactic-scale AGN ionization cones. The high incidence of AGN among the most
striking jellyfishes may be due to ram pressure causing gas to flow towards the
center and triggering the AGN activity, or to an enhancement of the stripping
caused by AGN energy injection, or both. Our analysis of the galaxy position
and velocity relative to the cluster strongly supports the first hypothesis,
and puts forward ram pressure as another, yet unforeseen, possible mechanism
for feeding the central supermassive black hole with gas.Comment: published in Nature, Vol.548, Number 7667, pag.30
Identification of furfural resistant strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a collection of environmental and industrial isolates
Background Fermentation of bioethanol using lignocellulosic biomass as a raw material provides a sustainable alternative to current biofuel production methods by utilising waste food streams as raw material. Before lignocellulose can be fermented it requires physical, chemical and enzymatic treatment in order to release monosaccharides, a process that causes the chemical transformation of glucose and xylose into the cyclic aldehydes furfural and hydroxyfurfural. These furan compounds are potent inhibitors of Saccharomyces fermentation, and consequently furfural tolerant strains of Saccharomyces are required for lignocellulosic fermentation. Results This study investigated yeast tolerance to furfural and hydroxyfurfural using a collection of 71 environmental and industrial isolates of the baker’s yeast Saccharomyces cerevisiae and its closest relative Saccharomyces paradoxus. The Saccharomyces strains were initially screened for growth on media containing 100 mM glucose and 1.5 mg ml-1 furfural. Five strains were identified that showed a significant tolerance to growth in the presence of furfural and these were then screened for growth and ethanol production in the presence of increasing amounts (0.1-4 mg ml-1) of furfural. Conclusions Of the five furfural tolerant strains S. cerevisiae NCYC 3451 displayed the greatest furfural resistance, and was able to grow in the presence of up to 3.0 mg ml-1 furfural. Furthermore, ethanol production in this strain did not appear to be inhibited by furfural, with the highest ethanol yield observed at 3.0 mg ml-1 furfural. Although furfural resistance was not found to be a trait specific to any one particular lineage or population, three of the strains were isolated from environments where they might be continually exposed to low levels of furfural through the on-going natural degradation of lignocelluloses, and would therefore develop elevated levels of resistance to these furan compounds. Thus these strains represent good candidates for future studies of genetic variation relevant to understanding and manipulating furfural resistance and in the development of tolerant ethanologenic yeast strains for use in bioethanol production from lignocellulose processing
Detecting the orientation of magnetic fields in galaxy clusters
Clusters of galaxies, filled with hot magnetized plasma, are the largest
bound objects in existence and an important touchstone in understanding the
formation of structures in our Universe. In such clusters, thermal conduction
follows field lines, so magnetic fields strongly shape the cluster's thermal
history; that some have not since cooled and collapsed is a mystery. In a
seemingly unrelated puzzle, recent observations of Virgo cluster spiral
galaxies imply ridges of strong, coherent magnetic fields offset from their
centre. Here we demonstrate, using three-dimensional magnetohydrodynamical
simulations, that such ridges are easily explained by galaxies sweeping up
field lines as they orbit inside the cluster. This magnetic drape is then lit
up with cosmic rays from the galaxies' stars, generating coherent polarized
emission at the galaxies' leading edges. This immediately presents a technique
for probing local orientations and characteristic length scales of cluster
magnetic fields. The first application of this technique, mapping the field of
the Virgo cluster, gives a startling result: outside a central region, the
magnetic field is preferentially oriented radially as predicted by the
magnetothermal instability. Our results strongly suggest a mechanism for
maintaining some clusters in a 'non-cooling-core' state.Comment: 48 pages, 21 figures, revised version to match published article in
  Nature Physics, high-resolution version available at
  http://www.cita.utoronto.ca/~pfrommer/Publications/pfrommer-dursi.pd
Equilibrium and dynamical properties of two dimensional self-gravitating systems
A system of N classical particles in a 2D periodic cell interacting via
long-range attractive potential is studied. For low energy density  a
collapsed phase is identified, while in the high energy limit the particles are
homogeneously distributed. A phase transition from the collapsed to the
homogeneous state occurs at critical energy U_c. A theoretical analysis within
the canonical ensemble identifies such a transition as first order. But
microcanonical simulations reveal a negative specific heat regime near .
The dynamical behaviour of the system is affected by this transition : below
U_c anomalous diffusion is observed, while for U > U_c the motion of the
particles is almost ballistic. In the collapsed phase, finite -effects act
like a noise source of variance O(1/N), that restores normal diffusion on a
time scale diverging with N. As a consequence, the asymptotic diffusion
coefficient will also diverge algebraically with N and superdiffusion will be
observable at any time in the limit N \to \infty. A Lyapunov analysis reveals
that for U > U_c the maximal exponent \lambda decreases proportionally to
N^{-1/3} and vanishes in the mean-field limit. For sufficiently small energy,
in spite of a clear non ergodicity of the system, a common scaling law \lambda
\propto U^{1/2} is observed for any initial conditions.Comment: 17 pages, Revtex - 15 PS Figs - Subimitted to Physical Review E - Two
  column version with included figures : less paper waste
A cross-national study on the antecedents of work–life balance from the fit and balance perspective
Drawing on the perceived work–family fit and balance perspective, this study investigates demands and resources as antecedents of work–life balance (WLB) across four countries (New Zealand, France, Italy and Spain), so as to provide empirical cross-national evidence. Using structural equation modelling analysis on a sample of 870 full time employees, we found that work demands, hours worked and family demands were negatively related to WLB, while job autonomy and supervisor support were positively related to WLB. We also found evidence that resources (job autonomy and supervisor support) moderated the relationships between demands and work–life balance, with high resources consistently buffering any detrimental influence of demands on WLB. Furthermore, our study identified additional predictors of WLB that were unique to some national contexts. For example, in France and Italy, overtime hours worked were negatively associated with WLB, while parental status was positively associated with WLB. Overall, the implications for theory and practice are discussed.Peer ReviewedPostprint (author's final draft
Evidence for methane and ammonia in the coma of comet P/Halley
Methane and ammonia abundances in the coma of Halley are derived from Giotto IMS data using an Eulerian model of chemical and physical processes inside the contact surface to simulate Giotto HIS ion mass spectral data for mass-to-charge ratios (m/q) from 15 to 19. The ratio m/q = 19/18 as a function of distance from the nucleus is not reproduced by a model for a pure water coma. It is necessary to include the presence of NH_3 , and uniquely NH_3 , in coma gases in order to explain the data. A ratio of production rates Q(NH_3)/Q(H20) = 0.01-Q.02 results in model values approximating the Giotto data. Methane is identified as the most probable source of the distinct peak at m/q = 15.
The observations are fit best with Q(CH_4)/Q(H_20) = 0.02. The chemical composition of the comet nucleus implied by these production rate ratios is unlike that of the outer planets. On the other hand, there are also significant differences from observations of gas phase interstellar material
Coexisting conical bipolar and equatorial outflows from a high-mass protostar
The BN/KL region in the Orion molecular cloud is an archetype in the study of
the formation of stars much more massive than the Sun. This region contains
luminous young stars and protostars, but it is difficult to study because of
overlying dust and gas. Our basic expectations are shaped to some extent by the
present theoretical picture of star formation, the cornerstone of which is that
protostars acrete gas from rotating equatorial disks, and shed angular momentum
by ejecting gas in bipolar outflows. The main source of the outflow in the
BN/KL region may be an object known as radio source I, which is commonly
believed to be surrounded by a rotating disk of molecular material. Here we
report high-resolution observations of silicon monoxide (SiO) and water maser
emission from the gas surrounding source I; we show that within 60 AU (about
the size of the Solar System), the region is dominated by a conical bipolar
outflow, rather than the expected disk. A slower outflow, close to the
equatorial plane of the protostellar system, extends to radii of 1,000 AU.Comment: 10 pages, 2 figures. Accepted by Nature. To appear December 199
Cluster Lenses
Clusters of galaxies are the most recently assembled, massive, bound
structures in the Universe. As predicted by General Relativity, given their
masses, clusters strongly deform space-time in their vicinity. Clusters act as
some of the most powerful gravitational lenses in the Universe. Light rays
traversing through clusters from distant sources are hence deflected, and the
resulting images of these distant objects therefore appear distorted and
magnified. Lensing by clusters occurs in two regimes, each with unique
observational signatures. The strong lensing regime is characterized by effects
readily seen by eye, namely, the production of giant arcs, multiple-images, and
arclets. The weak lensing regime is characterized by small deformations in the
shapes of background galaxies only detectable statistically. Cluster lenses
have been exploited successfully to address several important current questions
in cosmology: (i) the study of the lens(es) - understanding cluster mass
distributions and issues pertaining to cluster formation and evolution, as well
as constraining the nature of dark matter; (ii) the study of the lensed objects
- probing the properties of the background lensed galaxy population - which is
statistically at higher redshifts and of lower intrinsic luminosity thus
enabling the probing of galaxy formation at the earliest times right up to the
Dark Ages; and (iii) the study of the geometry of the Universe - as the
strength of lensing depends on the ratios of angular diameter distances between
the lens, source and observer, lens deflections are sensitive to the value of
cosmological parameters and offer a powerful geometric tool to probe Dark
Energy. In this review, we present the basics of cluster lensing and provide a
current status report of the field.Comment: About 120 pages - Published in Open Access at:
  http://www.springerlink.com/content/j183018170485723/ . arXiv admin note:
  text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author
- …
