A system of N classical particles in a 2D periodic cell interacting via
long-range attractive potential is studied. For low energy density U a
collapsed phase is identified, while in the high energy limit the particles are
homogeneously distributed. A phase transition from the collapsed to the
homogeneous state occurs at critical energy U_c. A theoretical analysis within
the canonical ensemble identifies such a transition as first order. But
microcanonical simulations reveal a negative specific heat regime near Uc.
The dynamical behaviour of the system is affected by this transition : below
U_c anomalous diffusion is observed, while for U > U_c the motion of the
particles is almost ballistic. In the collapsed phase, finite N-effects act
like a noise source of variance O(1/N), that restores normal diffusion on a
time scale diverging with N. As a consequence, the asymptotic diffusion
coefficient will also diverge algebraically with N and superdiffusion will be
observable at any time in the limit N \to \infty. A Lyapunov analysis reveals
that for U > U_c the maximal exponent \lambda decreases proportionally to
N^{-1/3} and vanishes in the mean-field limit. For sufficiently small energy,
in spite of a clear non ergodicity of the system, a common scaling law \lambda
\propto U^{1/2} is observed for any initial conditions.Comment: 17 pages, Revtex - 15 PS Figs - Subimitted to Physical Review E - Two
column version with included figures : less paper waste