165 research outputs found
Crop and Soil Productivity Response to Corn Residue Removal: A Literature Review
Society is facing three related issues: over-reliance on imported fuel, increasing levels of greenhouse gases in the atmosphere, and producing sufficient food for a growing world population. The U.S. Department of Energy and private enterprise are developing technology necessary to use high-cellulose feedstock, such as crop residues, for ethanol production. Corn (Zea mays L.) residue can provide about 1.7 times more C than barley (Hordeum vulgare L.), oat (Avena sativa L.), sorghum [Sorghum bicolor (L.) Moench], soybean [Glycine max L.) Merr.], sunflower (Helianthus annuus L.), and wheat (Triticum aestivum L.) residues based on production levels. Removal of crop residue from the field must be balanced against impacting the environment (soil erosion), maintaining soil organic matter levels, and pre- serving or enhancing productivity. Our objective is to summarize published works for potential impacts of wide-scale, corn stover collection on corn production capacity in Corn Belt soils. We address the issue crop yield (sustainability) and related soil processes directly. However, scarcity of data requires us to deal with the issue of greenhouse gases indirectly and by inference. All ramifications of new management practices and crop uses must be explored and evaluated fully before industry is established. Our conclusion is that within limits, corn stover can be harvested for ethanol production to provide a renewable, domestic source of energy that reduces greenhouse gases. Recommendation for removal rates will vary based on regional yield, climatic conditions, and cultural practices. Agronomists are challenged to develop a procedure (tool) for recommending maximum permissible removal rates that ensure sustained soil productivity
All Inequalities for the Relative Entropy
The relative entropy of two n-party quantum states is an important quantity
exhibiting, for example, the extent to which the two states are different. The
relative entropy of the states formed by reducing two n-party to a smaller
number of parties is always less than or equal to the relative entropy of
the two original n-party states. This is the monotonicity of relative entropy.
Using techniques from convex geometry, we prove that monotonicity under
restrictions is the only general inequality satisfied by relative entropies. In
doing so we make a connection to secret sharing schemes with general access
structures.
A suprising outcome is that the structure of allowed relative entropy values
of subsets of multiparty states is much simpler than the structure of allowed
entropy values. And the structure of allowed relative entropy values (unlike
that of entropies) is the same for classical probability distributions and
quantum states.Comment: 15 pages, 3 embedded eps figure
Effect of rotator cuff dysfunction on the initial mechanical stability of cementless glenoid components
The functional outcome of shoulder replacement is related to the condition of the rotator cuff. Rotator cuff disease is a common problem in candidates for total shoulder arthroplasty; this study relates the functional status of the rotator cuff to the initial stability of a cementless glenoid implant. A 3D finite element model of a complete scapula was used to quantify the effect of a dysfunctional rotator cuff in terms of bone-implant interface micromotions when the implant is physiologically loaded shortly after surgery. Four rotator cuff conditions (from fully intact to progressively ruptured rotator cuff tendons) as well as two bone qualities were simulated in a model. Micromotions were significantly larger in the worst modeled cuff dysfunction (i.e. the supraspinatus and infraspinatus tendons were fully dysfunctional). Micromotions were also significantly different between conditions with healthy and poor bone quality. The implant's initial stability was hardly influenced by a dysfunctional supraspinatus alone. However, when the infraspinatus was also affected, the glenohumeral joint force was displaced to the component's rim resulting in larger micromotions and instability of the implant
Metamaterials proposed as perfect magnetoelectrics
Magnetoelectric susceptibility of a metamaterial built from split ring
resonators have been investigated both experimentally and within an equivalent
circuit model. The absolute values have been shown to exceed by two orders of
magnitude that of classical magnetoelectric materials. The metamaterial
investigated reaches the theoretically predicted value of the magnetoelectric
susceptibility which is equal to the geometric average of the electric and
magnetic susceptibilities.Comment: 5 pages, 3 figure
Systematic effects in the extraction of the 'WMAP haze'
The extraction of a 'haze' from the WMAP microwave skymaps is based on
subtraction of known foregrounds, viz. free-free (bremsstrahlung), thermal dust
and synchrotron, each traced by other skymaps. While the 408 MHz all-sky survey
is used for the synchrotron template, the WMAP bands are at tens of GHz where
the spatial distribution of the radiating cosmic ray electrons ought to be
quite different because of the energy-dependence of their diffusion in the
Galaxy. The systematic uncertainty this introduces in the residual skymap is
comparable to the claimed haze and can, for certain source distributions, have
a very similar spectrum and latitudinal profile and even a somewhat similar
morphology. Hence caution must be exercised in interpreting the 'haze' as a
physical signature of, e.g., dark matter annihilation in the Galactic centre.Comment: 17 pages, 12 figures; improved diffusion model; extended discussion
of spectral index maps; clarifying comments, figures and references added; to
appear in JCA
Quantum computing with mixed states
We discuss a model for quantum computing with initially mixed states.
Although such a computer is known to be less powerful than a quantum computer
operating with pure (entangled) states, it may efficiently solve some problems
for which no efficient classical algorithms are known. We suggest a new
implementation of quantum computation with initially mixed states in which an
algorithm realization is achieved by means of optimal basis independent
transformations of qubits.Comment: 2 figures, 52 reference
An fMRI investigation of the relationship between future imagination and cognitive flexibility
While future imagination is largely considered to be a cognitive process grounded in default mode network activity, studies have shown that future imagination recruits regions in both default mode and frontoparietal control networks. In addition, it has recently been shown that the ability to imagine the future is associated with cognitive flexibility, and that tasks requiring cognitive flexibility result in increased coupling of the default mode network with frontoparietal control and salience networks. In the current study, we investigated the neural correlates underlying the association between cognitive flexibility and future imagination in two ways. First, we experimentally varied the degree of cognitive flexibility required during future imagination by manipulating the disparateness of episodic details contributing to imagined events. To this end, participants generated episodic details (persons, locations, objects) within three social spheres; during fMRI scanning they were presented with sets of three episodic details all taken from the same social sphere (Congruent condition) or different social spheres (Incongruent condition) and required to imagine a future event involving the three details. We predicted that, relative to the Congruent condition, future simulation in the Incongruent condition would be associated with increased activity in regions of the default mode, frontoparietal and salience networks. Second, we hypothesized that individual differences in cognitive flexibility, as measured by performance on the Alternate Uses Task, would correspond to individual differences in the brain regions recruited during future imagination. A task partial least squares (PLS) analysis showed that the Incongruent condition resulted in an increase in activity in regions in salience networks (e.g. the insula) but, contrary to our prediction, reduced activity in many regions of the default mode network (including the hippocampus). A subsequent functional connectivity (within-subject seed PLS) analysis showed that the insula exhibited increased coupling with default mode regions during the Incongruent condition. Finally, a behavioral PLS analysis showed that individual differences in cognitive flexibility were associated with differences in activity in a number of regions from frontoparietal, salience and default-mode networks during both future imagination conditions, further highlighting that the cognitive flexibility underlying future imagination is grounded in the complex interaction of regions in these networks
- …