23,925 research outputs found

    Simple approach to the mesoscopic open electron resonator: Quantum current oscillations

    Full text link
    The open electron resonator, described by Duncan et.al, is a mesoscopic device that has attracted considerable attention due to its remarkable behaviour (conductance oscillations), which has been explained by detailed theories based on the behaviour of electrons at the top of the Fermi sea. In this work, we study the resonator using the simple quantum quantum electrical circuit approach, developed recently by Li and Chen. With this approach, and considering a very simple capacitor-like model of the system, we are able to theoretically reproduce the observed conductance oscillations. A very remarkable feature of the simple theory developed here is the fact that the predictions depend mostly on very general facts, namely, the discrete nature of electric charge and quantum mechanics; other detailed features of the systems described enter as parameters of the system, such as capacities and inductances

    Rectification of electronic heat current by a hybrid thermal diode

    Full text link
    We report the realization of an ultra-efficient low-temperature hybrid heat current rectifier, thermal counterpart of the well-known electric diode. Our design is based on a tunnel junction between two different elements: a normal metal and a superconducting island. Electronic heat current asymmetry in the structure arises from large mismatch between the thermal properties of these two. We demonstrate experimentally temperature differences exceeding 6060 mK between the forward and reverse thermal bias configurations. Our device offers a remarkably large heat rectification ratio up to ∌140\sim 140 and allows its prompt implementation in true solid-state thermal nanocircuits and general-purpose electronic applications requiring energy harvesting or thermal management and isolation at the nanoscale.Comment: 8 pages, 6 color figure

    Transformation Optics Approach to Plasmon-Exciton Strong Coupling in Nanocavities

    Full text link
    We investigate the conditions yielding plasmon-exciton strong coupling at the single emitter level in the gap between two metal nanoparticles. A quasi-analytical transformation optics approach is developed that makes possible a thorough exploration of this hybrid system incorporating the full richness of its plasmonic spectrum. This allows us to reveal that by placing the emitter away from the cavity center, its coupling to multipolar dark modes of both even and odd parity increases remarkably. This way, reversible dynamics in the population of the quantum emitter takes place in feasible implementations of this archetypal nanocavity.Comment: 5 pages, 4 figure

    Electronic heat current rectification in hybrid superconducting devices

    Full text link
    In this work, we review and expand recent theoretical proposals for the realization of electronic thermal diodes based on tunnel-junctions of normal metal and superconducting thin films. Starting from the basic rectifying properties of a single hybrid tunnel junction, we will show how the rectification efficiency can be largely increased by combining multiple junctions in an asymmetric chain of tunnel-coupled islands. We propose three different designs, analyzing their performance and their potential advantages. Besides being relevant from a fundamental physics point of view, this kind of devices might find important technological application as fundamental building blocks in solid-state thermal nanocircuits and in general-purpose cryogenic electronic applications requiring energy management.Comment: 9 pages, 5 color figure

    Cryptanalyzing a discrete-time chaos synchronization secure communication system

    Full text link
    This paper describes the security weakness of a recently proposed secure communication method based on discrete-time chaos synchronization. We show that the security is compromised even without precise knowledge of the chaotic system used. We also make many suggestions to improve its security in future versions.Comment: 11 pages, 3 figures, latex forma

    The Core-Collapse Supernova Rate in Arp299 Revisited

    Full text link
    We present a study of the CCSN rate in nuclei A and B1 of the luminous infrared galaxy Arp299, based on 11 years of Very Large Array monitoring of their radio emission at 8.4 GHz. Significant variations in the nuclear radio flux density can be used to identify the CCSN activity in the absence of high-resolution very long baseline interferometry observations. In the case of the B1-nucleus, the small variations in its measured diffuse radio emission are below the fluxes expected from radio supernovae, thus making it well-suited to detect RSNe through flux density variability. In fact, we find strong evidence for at least three RSNe this way, which results in a lower limit for the CCSN rate of 0.28 +/- 0.16 per year. In the A-nucleus, we did not detect any significant variability and found a SN detection threshold luminosity which allows only the detection of the most luminous RSNe known. Our method is basically blind to normal CCSN explosions occurring within the A-nucleus, which result in too small variations in the nuclear flux density, remaining diluted by the strong diffuse emission of the nucleus itself. Additionally, we have attempted to find near-infrared counterparts for the earlier reported RSNe in the Arp299 nucleus A, by comparing NIR adaptive optics images from the Gemini-N telescope with contemporaneous observations from the European VLBI Network. However, we were not able to detect NIR counterparts for the reported radio SNe within the innermost regions of nucleus A. While our NIR observations were sensitive to typical CCSNe at 300 mas from the centre of the nucleus A, suffering from extinction up to A_v~15 mag, they were not sensitive to such highly obscured SNe within the innermost nuclear regions where most of the EVN sources were detected. (abridged)Comment: 12 pages, 4 figures and 7 tables. Accepted for publication in MNRA

    Characterization of rational ruled surfaces

    Get PDF
    The algebraic ruled surface is a typical modeling surface in computer aided geometric design. In this paper, we present algorithms to determine whether a given implicit or parametric algebraic surface is a rational ruled surface, and in the affirmative case, to compute a standard parametric representation for the surface

    Parameterization of rational translational surfaces

    Get PDF
    A rational translational surface is a typical modeling surface used in computer-aided design and the architecture industry. In this study, we determine whether a given algebraic surface implicitly defined as V is a rational translational surface or not. This problem is reduced to finding the rational parameterizations of two space curves. More important, our discussions are constructive, and thus if V is translational, we provide a parametric representation of V of the form P(t1,t2)=P1(t1)+P2(t2).Ministerio de Ciencia, Innovacion y Universidade

    The Ό-basis of improper rational parametric surface and its application

    Get PDF
    The ÎŒ-basis is a newly developed algebraic tool in curve and surface representations and it is used to analyze some essential geometric properties of curves and surfaces. However, the theoretical frame of ÎŒ-bases is still developing, especially of surfaces. We study the ÎŒ-basis of a rational surface V defined parametrically by P(tÂŻ),tÂŻ=(t1,t2) not being necessarily proper (or invertible). For applications using the ÎŒ-basis, an inversion formula for a given proper parametrization P(tÂŻ) is obtained. In addition, the degree of the rational map ϕP associated with any P(tÂŻ) is computed. If P(tÂŻ) is improper, we give some partial results in finding a proper reparametrization of V. Finally, the implicitization formula is derived from P (not being necessarily proper). The discussions only need to compute the greatest common divisors and univariate resultants of polynomials constructed from the ÎŒ-basis. Examples are given to illustrate the computational processes of the presented results.Ministerio de Ciencia, InnovaciĂłn y Universidade
    • 

    corecore