30 research outputs found

    Feasibility of a streamlined tuberculosis diagnosis and treatment initiation strategy.

    Get PDF
    OBJECTIVE: To assess the feasibility of a streamlined strategy for improving tuberculosis (TB) diagnostic evaluation and treatment initiation among patients with presumed TB. DESIGN: Single-arm interventional pilot study at five primary care health centers of a streamlined, SIngle-saMPLE (SIMPLE) TB diagnostic evaluation strategy: 1) examination of two smear results from a single spot sputum specimen using light-emitting diode fluorescence microscopy, and 2) daily transportation of smear-negative sputum samples to Xpert® MTB/RIF testing sites. RESULTS: Of 1212 adults who underwent sputum testing for TB, 99.6% had two smears examined from the spot sputum specimen. Sputum was transported for Xpert testing within 1 clinic day for 83% (907/1091) of the smear-negative patients. Of 157 (13%) patients with bacteriologically positive TB, 116 (74%) were identified using sputum smear microscopy and 41 (26%) using Xpert testing of smear-negative samples. Anti-tuberculosis treatment was initiated in 142 (90%) patients with bacteriologically positive TB, with a median time to treatment of 1 day for smear-positive patients and 6 days for smear-negative, Xpert-positive patients. CONCLUSION: The SIMPLE TB strategy led to successful incorporation of Xpert testing and rapid treatment initiation in the majority of patients with bacteriologically confirmed TB in a resource-limited setting

    Does tuberculosis screening improve individual outcomes? A systematic review.

    Get PDF
    BACKGROUND: To determine if tuberculosis (TB) screening improves patient outcomes, we conducted two systematic reviews to investigate the effect of TB screening on diagnosis, treatment outcomes, deaths (clinical review assessing 23 outcome indicators); and patient costs (economic review). METHODS: Pubmed, EMBASE, Scopus and the Cochrane Library were searched between 1/1/1980-13/4/2020 (clinical review) and 1/1/2010-14/8/2020 (economic review). As studies were heterogeneous, data synthesis was narrative. FINDINGS: Clinical review: of 27,270 articles, 18 (n=3 trials) were eligible. Nine involved general populations. Compared to passive case finding (PCF), studies showed lower smear grade (n=2/3) and time to diagnosis (n=2/3); higher pre-treatment losses to follow-up (screened 23% and 29% vs PCF 15% and 14%; n=2/2); and similar treatment success (range 68-81%; n=4) and case fatality (range 3-11%; n=5) in the screened group. Nine reported on risk groups. Compared to PCF, studies showed lower smear positivity among those culture-confirmed (n=3/4) and time to diagnosis (n=2/2); and similar (range 80-90%; n=2/2) treatment success in the screened group. Case fatality was lower in n=2/3 observational studies; both reported on established screening programmes. A neonatal trial and post-hoc analysis of a household contacts trial found screening was associated with lower all-cause mortality. Economic review: From 2841 articles, six observational studies were eligible. Total costs (n=6) and catastrophic cost prevalence (n=4; range screened 9-45% vs PCF 12-61%) was lower among those screened. INTERPRETATION: We found very limited patient outcome data. Collecting and reporting this data must be prioritised to inform policy and practice. FUNDING: WHO and EDCTP

    Impact and Cost-Effectiveness of Culture for Diagnosis of Tuberculosis in HIV-Infected Brazilian Adults

    Get PDF
    Culture of Mycobacterium tuberculosis currently represents the closest "gold standard" for diagnosis of tuberculosis (TB), but operational data are scant on the impact and cost-effectiveness of TB culture for human immunodeficiency (HIV-) infected individuals in resource-limited settings.We recorded costs, laboratory results, and dates of initiating TB therapy in a centralized TB culture program for HIV-infected patients in Rio de Janeiro, Brazil, constructing a decision-analysis model to estimate the incremental cost-effectiveness of TB culture from the perspective of a public-sector TB control program. Of 217 TB suspects presenting between January 2006 and March 2008, 33 (15%) had culture-confirmed active tuberculosis; 23 (70%) were smear-negative. Among smear-negative, culture-positive patients, 6 (26%) began TB therapy before culture results were available, 11 (48%) began TB therapy after culture result availability, and 6 (26%) did not begin TB therapy within 180 days of presentation. The cost per negative culture was US17.52(solidmedia)17.52 (solid media)-23.50 (liquid media). Per 1,000 TB suspects and compared with smear alone, TB culture with solid media would avert an estimated eight TB deaths (95% simulation interval [SI]: 4, 15) and 37 disability-adjusted life years (DALYs) (95% SI: 13, 76), at a cost of 36(9536 (95% SI: 25, 50)perTBsuspector50) per TB suspect or 962 (95% SI: 469,469, 2642) per DALY averted. Replacing solid media with automated liquid culture would avert one further death (95% SI: -1, 4) and eight DALYs (95% SI: -4, 23) at 2751perDALY(952751 per DALY (95% SI: 680, dominated). The cost-effectiveness of TB culture was more sensitive to characteristics of the existing TB diagnostic system than to the accuracy or cost of TB culture.TB culture is potentially effective and cost-effective for HIV-positive patients in resource-constrained settings. Reliable transmission of culture results to patients and integration with existing systems are essential

    A global reference for human genetic variation

    Get PDF
    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.We thank the many people who were generous with contributing their samples to the project: the African Caribbean in Barbados; Bengali in Bangladesh; British in England and Scotland; Chinese Dai in Xishuangbanna, China; Colombians in Medellin, Colombia; Esan in Nigeria; Finnish in Finland; Gambian in Western Division – Mandinka; Gujarati Indians in Houston, Texas, USA; Han Chinese in Beijing, China; Iberian populations in Spain; Indian Telugu in the UK; Japanese in Tokyo, Japan; Kinh in Ho Chi Minh City, Vietnam; Luhya in Webuye, Kenya; Mende in Sierra Leone; people with African ancestry in the southwest USA; people with Mexican ancestry in Los Angeles, California, USA; Peruvians in Lima, Peru; Puerto Ricans in Puerto Rico; Punjabi in Lahore, Pakistan; southern Han Chinese; Sri Lankan Tamil in the UK; Toscani in Italia; Utah residents (CEPH) with northern and western European ancestry; and Yoruba in Ibadan, Nigeria. Many thanks to the people who contributed to this project: P. Maul, T. Maul, and C. Foster; Z. Chong, X. Fan, W. Zhou, and T. Chen; N. Sengamalay, S. Ott, L. Sadzewicz, J. Liu, and L. Tallon; L. Merson; O. Folarin, D. Asogun, O. Ikpwonmosa, E. Philomena, G. Akpede, S. Okhobgenin, and O. Omoniwa; the staff of the Institute of Lassa Fever Research and Control (ILFRC), Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria; A. Schlattl and T. Zichner; S. Lewis, E. Appelbaum, and L. Fulton; A. Yurovsky and I. Padioleau; N. Kaelin and F. Laplace; E. Drury and H. Arbery; A. Naranjo, M. Victoria Parra, and C. Duque; S. Däkel, B. Lenz, and S. Schrinner; S. Bumpstead; and C. Fletcher-Hoppe. Funding for this work was from the Wellcome Trust Core Award 090532/Z/09/Z and Senior Investigator Award 095552/Z/11/Z (P.D.), and grants WT098051 (R.D.), WT095908 and WT109497 (P.F.), WT086084/Z/08/Z and WT100956/Z/13/Z (G.M.), WT097307 (W.K.), WT0855322/Z/08/Z (R.L.), WT090770/Z/09/Z (D.K.), the Wellcome Trust Major Overseas program in Vietnam grant 089276/Z.09/Z (S.D.), the Medical Research Council UK grant G0801823 (J.L.M.), the UK Biotechnology and Biological Sciences Research Council grants BB/I02593X/1 (G.M.) and BB/I021213/1 (A.R.L.), the British Heart Foundation (C.A.A.), the Monument Trust (J.H.), the European Molecular Biology Laboratory (P.F.), the European Research Council grant 617306 (J.L.M.), the Chinese 863 Program 2012AA02A201, the National Basic Research program of China 973 program no. 2011CB809201, 2011CB809202 and 2011CB809203, Natural Science Foundation of China 31161130357, the Shenzhen Municipal Government of China grant ZYC201105170397A (J.W.), the Canadian Institutes of Health Research Operating grant 136855 and Canada Research Chair (S.G.), Banting Postdoctoral Fellowship from the Canadian Institutes of Health Research (M.K.D.), a Le Fonds de Recherche duQuébec-Santé (FRQS) research fellowship (A.H.), Genome Quebec (P.A.), the Ontario Ministry of Research and Innovation – Ontario Institute for Cancer Research Investigator Award (P.A., J.S.), the Quebec Ministry of Economic Development, Innovation, and Exports grant PSR-SIIRI-195 (P.A.), the German Federal Ministry of Education and Research (BMBF) grants 0315428A and 01GS08201 (R.H.), the Max Planck Society (H.L., G.M., R.S.), BMBF-EPITREAT grant 0316190A (R.H., M.L.), the German Research Foundation (Deutsche Forschungsgemeinschaft) Emmy Noether Grant KO4037/1-1 (J.O.K.), the Beatriu de Pinos Program grants 2006 BP-A 10144 and 2009 BP-B 00274 (M.V.), the Spanish National Institute for Health Research grant PRB2 IPT13/0001-ISCIII-SGEFI/FEDER (A.O.), Ewha Womans University (C.L.), the Japan Society for the Promotion of Science Fellowship number PE13075 (N.P.), the Louis Jeantet Foundation (E.T.D.), the Marie Curie Actions Career Integration grant 303772 (C.A.), the Swiss National Science Foundation 31003A_130342 and NCCR “Frontiers in Genetics” (E.T.D.), the University of Geneva (E.T.D., T.L., G.M.), the US National Institutes of Health National Center for Biotechnology Information (S.S.) and grants U54HG3067 (E.S.L.), U54HG3273 and U01HG5211 (R.A.G.), U54HG3079 (R.K.W., E.R.M.), R01HG2898 (S.E.D.), R01HG2385 (E.E.E.), RC2HG5552 and U01HG6513 (G.T.M., G.R.A.), U01HG5214 (A.C.), U01HG5715 (C.D.B.), U01HG5718 (M.G.), U01HG5728 (Y.X.F.), U41HG7635 (R.K.W., E.E.E., P.H.S.), U41HG7497 (C.L., M.A.B., K.C., L.D., E.E.E., M.G., J.O.K., G.T.M., S.A.M., R.E.M., J.L.S., K.Y.), R01HG4960 and R01HG5701 (B.L.B.), R01HG5214 (G.A.), R01HG6855 (S.M.), R01HG7068 (R.E.M.), R01HG7644 (R.D.H.), DP2OD6514 (P.S.), DP5OD9154 (J.K.), R01CA166661 (S.E.D.), R01CA172652 (K.C.), P01GM99568 (S.R.B.), R01GM59290 (L.B.J., M.A.B.), R01GM104390 (L.B.J., M.Y.Y.), T32GM7790 (C.D.B., A.R.M.), P01GM99568 (S.R.B.), R01HL87699 and R01HL104608 (K.C.B.), T32HL94284 (J.L.R.F.), and contracts HHSN268201100040C (A.M.R.) and HHSN272201000025C (P.S.), Harvard Medical School Eleanor and Miles Shore Fellowship (K.L.), Lundbeck Foundation Grant R170-2014-1039 (K.L.), NIJ Grant 2014-DN-BX-K089 (Y.E.), the Mary Beryl Patch Turnbull Scholar Program (K.C.B.), NSF Graduate Research Fellowship DGE-1147470 (G.D.P.), the Simons Foundation SFARI award SF51 (M.W.), and a Sloan Foundation Fellowship (R.D.H.). E.E.E. is an investigator of the Howard Hughes Medical Institute

    Therapy and prophylaxis of opportunistic infections in HIV-infected patients: a guideline by the German and Austrian AIDS societies (DAIG/ÖAG) (AWMF 055/066)

    Get PDF

    Diagnostic accuracy of C-reactive protein for active pulmonary tuberculosis: a meta-analysis

    No full text
    SettingSystematic screening for active pulmonary tuberculosis (PTB) is recommended for high-risk populations, including people living with the human immunodeficiency virus (PLHIV); however, currently recommended TB screening tools are inadequate for most high-burden settings.ObjectiveTo determine whether C-reactive protein (CRP) possesses the necessary test characteristics to screen individuals for active PTB.DesignWe performed a systematic review and meta-analysis of studies evaluating the diagnostic accuracy of CRP (10 mg/l cut-off point) for culture-positive PTB. Pooled diagnostic accuracy estimates were generated using random-effects meta-analysis for out-patients and in-patients, and for pre-specified subgroups based on HIV status and test indication.ResultsWe identified nine unique studies enrolling 1793 adults from out-patient (five studies, 1121 patients) and in-patient settings (five studies, 672 patients), 72% of whom had confirmed HIV infection. Among out-patients, CRP had high sensitivity (93%, 95%CI 88-98) and moderate specificity (60%, 95%CI 40-75) for active PTB. Specificity was lowest among in-patients (21%, 95%CI 6-52) and highest among out-patients undergoing TB screening (range 58-81%). There was no difference in summary estimates by HIV status.ConclusionCRP, which is available as a simple, inexpensive and point-of-care test, can be used to screen PLHIV presenting for routine HIV/AIDS (acquired immune-deficiency syndrome) care for active TB
    corecore