193 research outputs found

    An m-leaming game for the study of humanities

    Get PDF
    Unlike the hard sciences, the study of humanities has not adequately leveraged on technologies such as mobile learning and serious games. Hence, this paper introduces SingaRacer, a mobile learning game to study humanities, specifically, history and culture. The ways in which users might perceive its prospect both as a game as well as an educational application was examined. For this purpose, SingaRacer was evaluated through a user study comprising 52 participants. Their intention to use SingaRacer was generally promising. Implications of the findings are highlighted

    On the unipolarity of charge transport in methanofullerene diodes

    Get PDF
    Fullerenes are electron transporting organic semiconductors with a wide range of applications. In particular, methanofullereneshave been the preferred choice for solution-processed solar cells and photodiodes. The wide applicability of fullerenes as both ‘ntype’transport materials and electron acceptors is clear. However, what is still a matter of debate is whether the fullerenes can alsosupport efficient transport of holes, particularly in diode geometries. In this letter, we utilize a number of recently developedexperimental methods for selective electron and hole mobility measurements. We show for the two most widely used solutionprocessable fullerenes, PC70- and-PC60BM, that whilst both exhibit electron mobilities as high as 10−3 cm2/Vs, their hole mobilities

    Toll-Like Receptor 8 Agonist and Bacteria Trigger Potent Activation of Innate Immune Cells in Human Liver

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The study was supported by a Grant core funding from the Agency for Science Technology and Research (A*STAR, Singapore) and a Singapore Translational Research Investigator Award (NRMC/StaR/013/2012) to AB as well as NIHR Biomedical Centre, Oxford, WT 091663MA, NIAID1U19AI082630-01, Oxford Martin School funding and an NIHR Senior Investigator award to PK

    Optimisation of Over-Expression in E. coli and Biophysical Characterisation of Human Membrane Protein Synaptogyrin 1

    Get PDF
    Progress in functional and structural studies of integral membrane proteins (IMPs) is lacking behind their soluble counterparts due to the great challenge in producing stable and homogeneous IMPs. Low natural abundance, toxicity when over-expressed and potential lipid requirements of IMPs are only a few reasons for the limited progress. Here, we describe an optimised workflow for the recombinant over-expression of the human tetraspan vesicle protein (TVP) synaptogyrin in Escherichia coli and its biophysical characterisation. TVPs are ubiquitous and abundant components of vesicles. They are believed to be involved in various aspects of the synaptic vesicle cycle, including vesicle biogenesis, exocytosis and endocytotic recycling. Even though TVPs are found in most cell types, high-resolution structural information for this class of membrane proteins is still missing. The optimisation of the N-terminal sequence of the gene together with the usage of the recently developed Lemo21(DE3) strain which allows the balancing of the translation with the membrane insertion rate led to a 50-fold increased expression rate compared to the classical BL21(DE3) strain. The protein was soluble and stable in a variety of mild detergents and multiple biophysical methods confirmed the folded state of the protein. Crosslinking experiments suggest an oligomeric architecture of at least four subunits. The protein stability is significantly improved in the presence of cholesteryl hemisuccinate as judged by differential light scattering. The approach described here can easily be adapted to other eukaryotic IMPs

    Inter-organizational governance and trilateral trust building: a case study of crowdsourcing-based open innovation in China

    Get PDF
    In a case study of a Chinese crowdsourcing intermediary, we explore the impact of inter-organizational governance on trilateral trust-building. We show that formal control and relational governance mechanisms are essential for swift and knowledge-based trust in R&D crowdsourcing. The case also indicates that Chinese businesses continue to use guanxi (informal personal connections) as a relational and contingent mechanism to maintain affect-based trust, but guanxi is shown to inhibit the growth of Internet-based crowdsourcing for open innovation in China

    Structural Modifications of the Brain in Acclimatization to High-Altitude

    Get PDF
    Adaptive changes in respiratory and cardiovascular responses at high altitude (HA) have been well clarified. However, the central mechanisms underlying HA acclimatization remain unclear. Using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) with fractional anisotropy (FA) calculation, we investigated 28 Han immigrant residents (17–22 yr) born and raised at HA of 2616–4200 m in Qinghai-Tibetan Plateau for at least 17 years and who currently attended college at sea-level (SL). Their family migrated from SL to HA 2–3 generations ago and has resided at HA ever since. Control subjects were matched SL residents. HA residents (vs. SL) showed decreased grey matter volume in the bilateral anterior insula, right anterior cingulate cortex, bilateral prefrontal cortex, left precentral cortex, and right lingual cortex. HA residents (vs. SL) had significantly higher FA mainly in the bilateral anterior limb of internal capsule, bilateral superior and inferior longitudinal fasciculus, corpus callosum, bilateral superior corona radiata, bilateral anterior external capsule, right posterior cingulum, and right corticospinal tract. Higher FA values in those regions were associated with decreased or unchanged radial diffusivity coinciding with no change of longitudinal diffusivity in HA vs. SL group. Conversely, HA residents had lower FA in the left optic radiation and left superior longitudinal fasciculus. Our data demonstrates that HA acclimatization is associated with brain structural modifications, including the loss of regional cortical grey matter accompanied by changes in the white matter, which may underlie the physiological adaptation of residents at HA

    Diseases and Causes of Death in European Bats: Dynamics in Disease Susceptibility and Infection Rates

    Get PDF
    Bats receive increasing attention in infectious disease studies, because of their well recognized status as reservoir species for various infectious agents. This is even more important, as bats with their capability of long distance dispersal and complex social structures are unique in the way microbes could be spread by these mammalian species. Nevertheless, infection studies in bats are predominantly limited to the identification of specific pathogens presenting a potential health threat to humans. But the impact of infectious agents on the individual host and their importance on bat mortality is largely unknown and has been neglected in most studies published to date.) were collected in different geographic regions in Germany. Most animals represented individual cases that have been incidentally found close to roosting sites or near human habitation in urban and urban-like environments. The bat carcasses were subjected to a post-mortem examination and investigated histo-pathologically, bacteriologically and virologically. Trauma and disease represented the most important causes of death in these bats. Comparative analysis of pathological findings and microbiological results show that microbial agents indeed have an impact on bats succumbing to infectious diseases, with fatal bacterial, viral and parasitic infections found in at least 12% of the bats investigated.Our data demonstrate the importance of diseases and infectious agents as cause of death in European bat species. The clear seasonal and individual variations in disease prevalence and infection rates indicate that maternity colonies are more susceptible to infectious agents, underlining the possible important role of host physiology, immunity and roosting behavior as risk factors for infection of bats

    Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis

    Get PDF
    New therapeutic strategies are needed to combat the tuberculosis pandemic and the spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) forms of the disease, which remain a serious public health challenge worldwide1, 2. The most urgent clinical need is to discover potent agents capable of reducing the duration of MDR and XDR tuberculosis therapy with a success rate comparable to that of current therapies for drug-susceptible tuberculosis. The last decade has seen the discovery of new agent classes for the management of tuberculosis3, 4, 5, several of which are currently in clinical trials6, 7, 8. However, given the high attrition rate of drug candidates during clinical development and the emergence of drug resistance, the discovery of additional clinical candidates is clearly needed. Here, we report on a promising class of imidazopyridine amide (IPA) compounds that block Mycobacterium tuberculosis growth by targeting the respiratory cytochrome bc1 complex. The optimized IPA compound Q203 inhibited the growth of MDR and XDR M. tuberculosis clinical isolates in culture broth medium in the low nanomolar range and was efficacious in a mouse model of tuberculosis at a dose less than 1 mg per kg body weight, which highlights the potency of this compound. In addition, Q203 displays pharmacokinetic and safety profiles compatible with once-daily dosing. Together, our data indicate that Q203 is a promising new clinical candidate for the treatment of tuberculosis

    Ceruloplasmin Deficiency Reduces Levels of Iron and BDNF in the Cortex and Striatum of Young Mice and Increases Their Vulnerability to Stroke

    Get PDF
    Ceruloplasmin (Cp) is an essential ferroxidase that plays important roles in cellular iron trafficking. Previous findings suggest that the proper regulation and subcellular localization of iron are very important in brain cell function and viability. Brain iron dyshomeostasis is observed during normal aging, as well as in several neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases, coincident with areas more susceptible to insults. Because of their high metabolic demand and electrical excitability, neurons are particularly vulnerable to ischemic injury and death. We therefore set out to look for abnormalities in the brain of young adult mice that lack Cp. We found that iron levels in the striatum and cerebral cortex of these young animals are significantly lower than wild-type (WT) controls. Also mRNA levels of the neurotrophin brain derived neurotrophic factor (BDNF), known for its role in maintenance of cell viability, were decreased in these brain areas. Chelator-mediated depletion of iron in cultured neural cells resulted in reduced BDNF expression by a posttranscriptional mechanism, suggesting a causal link between low brain iron levels and reduced BDNF expression. When the mice were subjected to middle cerebral artery occlusion, a model of focal ischemic stroke, we found increased brain damage in Cp-deficient mice compared to WT controls. Our data indicate that lack of Cp increases neuronal susceptibility to ischemic injury by a mechanism that may involve reduced levels of iron and BDNF
    corecore