210 research outputs found

    Comparison of laboratory and daily-life gait speed assessment during on and off states in parkinson’s disease

    Get PDF
    Accurate assessment of Parkinson’s disease (PD) ON and OFF states in the usual environment is essential for tailoring optimal treatments. Wearables facilitate measurements of gait in novel and unsupervised environments; however, differences between unsupervised and in-laboratory measures have been reported in PD. We aimed to investigate whether unsupervised gait speed discriminates medication states and which supervised tests most accurately represent home perfor-mance. In-lab gait speeds from different gait tasks were compared to home speeds of 27 PD patients at ON and OFF states using inertial sensors. Daily gait speed distribution was expressed in percentiles and walking bout (WB) length. Gait speeds differentiated ON and OFF states in the lab and the home. When comparing lab with home performance, ON assessments in the lab showed moderate-to-high correlations with faster gait speeds in unsupervised environment (r = 0.69; p < 0.001), associated with long WB. OFF gait assessments in the lab showed moderate correlation values with slow gait speeds during OFF state at home (r = 0.56; p = 0.004), associated with short WB. In-lab and daily assessments of gait speed with wearables capture additional integrative aspects of PD, reflecting different aspects of mobility. Unsupervised assessment using wearables adds complementary information to the clinical assessment of motor fluctuations in PD.This research was funded by Keep Control from the EU’s Horizon 2020 (H2020) research and innovation program under the Marie Sklodowska-Curie (MSCA-ITN-ETN), grant number 721577. No other financial support and funding for the preceding twelve months are applied

    Plasma neurofilament light chain: an early biomarker for hereditary ATTR amyloid polyneuropathy

    Get PDF
    BACKGROUND: Transthyretin amyloidosis due to V30M mutation (ATTR-V30M) is the most frequent hereditary ATTR amyloidosis. Besides neurophysiological measures, there are no biomarkers to detect preclinical disease or monitor disease progression. CSF or plasma neurofilament light chain (pNfL) have recently been considered sensitive biomarkers to quantitate neuro-axonal damage in several disorders of the peripheral and central nervous system. OBJECTIVE: Characterise plasma NfL levels in a series of untreated ATTR-V30M patients stratified by clinical severity using a cross-sectional retrospective study design. METHODS: Sixty ATTR-V30M patients and 16 controls from 2 independent cohorts were analysed for pNfL by single-molecule array assay (SIMOA) technique. Disease severity was assessed with Polyneuropathy Disability Score. RESULTS: pNfL is elevated in ATTR-V30M patients as a function of disease severity in both cohorts. Moreover, pNfL discriminates asymptomatic mutation carriers from early symptomatic patients (AUC = 0.97; p 66.9 pg/mL) also discriminates patients with sensory neuropathy from patients with motor neuropathy (AUC = 0.91; p < .01) with a sensitivity of 61.5% and a specificity of 92.3%. CONCLUSION: pNfL is an easily accessible biomarker to establish ATTR-V30M disease conversion and to monitor disease progression. pNfL could be used as efficacy measure of disease-oriented therapies in clinical and pre-clinical trials

    A Systematic Review of Mosquito Coils and Passive Emanators: Defining Recommendations for Spatial Repellency Testing Methodologies.

    Get PDF
    Mosquito coils, vaporizer mats and emanators confer protection against mosquito bites through the spatial action of emanated vapor or airborne pyrethroid particles. These products dominate the pest control market; therefore, it is vital to characterize mosquito responses elicited by the chemical actives and their potential for disease prevention. The aim of this review was to determine effects of mosquito coils and emanators on mosquito responses that reduce human-vector contact and to propose scientific consensus on terminologies and methodologies used for evaluation of product formats that could contain spatial chemical actives, including indoor residual spraying (IRS), long lasting insecticide treated nets (LLINs) and insecticide treated materials (ITMs). PubMed, (National Centre for Biotechnology Information (NCBI), U.S. National Library of Medicine, NIH), MEDLINE, LILAC, Cochrane library, IBECS and Armed Forces Pest Management Board Literature Retrieval System search engines were used to identify studies of pyrethroid based coils and emanators with key-words "Mosquito coils" "Mosquito emanators" and "Spatial repellents". It was concluded that there is need to improve statistical reporting of studies, and reach consensus in the methodologies and terminologies used through standardized testing guidelines. Despite differing evaluation methodologies, data showed that coils and emanators induce mortality, deterrence, repellency as well as reduce the ability of mosquitoes to feed on humans. Available data on efficacy outdoors, dose-response relationships and effective distance of coils and emanators is inadequate for developing a target product profile (TPP), which will be required for such chemicals before optimized implementation can occur for maximum benefits in disease control

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Bone mineral density in vocational and professional ballet dancers

    Get PDF
    Summary: According to existing literature, bone health in ballet dancers is controversial. We have verified that, compared to controls, young female and male vocational ballet dancers have lower bone mineral density (BMD) at both impact and non-impact sites, whereas female professional ballet dancers have lower BMD only at non-impact sites. Introduction: The aims of this study were to (a) assess bone mineral density (BMD) in vocational (VBD) and professional (PBD) ballet dancers and (b) investigate its association with body mass (BM), fat mass (FM), lean mass (LM), maturation and menarche. Methods: The total of 152 VBD (13 ± 2.3 years; 112 girls, 40 boys) and 96 controls (14 ± 2.1 years; 56 girls, 40 boys) and 184 PBD (28 ± 8.5 years; 129 females, 55 males) and 160 controls (27 ± 9.5 years; 110 female, 50 males) were assessed at the lumbar spine (LS), femoral neck (FN), forearm and total body by dual-energy X-ray absorptiometry. Maturation and menarche were assessed via questionnaires. Results: VBD revealed lower unadjusted BMD at all anatomical sites compared to controls (p < 0.001); following adjustments for Tanner stage and gynaecological age, female VBD showed similar BMD values at impact sites. However, no factors were found to explain the lower adjusted BMD values in VBD (female and male) at the forearm (non-impact site), nor for the lower adjusted BMD values in male VBD at the FN. Compared to controls, female PBD showed higher unadjusted and adjusted BMD for potential associated factors at the FN (impact site) (p < 0.001) and lower adjusted at the forearm (p < 0.001). Male PBD did not reveal lower BMD than controls at any site. Conclusions: both females and males VBD have lower BMD at impact and non-impact sites compared to control, whereas this is only the case at non-impact site in female PBD. Maturation seems to explain the lower BMD at impact sites in female VBD

    Genetic variation in Wnt/β-catenin and ER signalling pathways in female and male elite dancers and its associations with low bone mineral density: a cross-section and longitudinal study.

    Get PDF
    The association of genetic polymorphisms with low bone mineral density in elite athletes have not been considered previously. The present study found that bone mass phenotypes in elite and pre-elite dancers are related to genetic variants at the Wnt/β-catenin and ER pathways. Some athletes (e.g. gymnasts, dancers, swimmers) are at increased risk for low bone mineral density (BMD) which, if untreated, can lead to osteoporosis. To investigate the association of genetic polymorphisms in the oestrogen receptor (ER) and the Wnt/β-catenin signalling pathways with low BMD in elite and pre-elite dancers (impact sport athletes). The study included three phases: (1) 151 elite and pre-elite dancers were screened for the presence of low BMD and traditional osteoporosis risk factors (low body weight, menstrual disturbances, low energy availability); (2) a genetic association study was conducted in 151 elite and pre-elite dancers and age- and sex- controls; (3) serum sclerostin was measured in 101 pre-elite dancers and age- and sex-matched controls within a 3-year period. Eighty dancers revealed low BMD: 56.3% had at least one traditional osteoporosis risk factor, whereas 28.6% did not display any risk factor (37.2% revealed traditional osteoporosis risk factors, but had normal BMD). Body weight, menstrual disturbances and energy availability did not fully predict bone mass acquisition. Instead, genetic polymorphisms in the ER and Wnt/β-catenin pathways were found to be risk factors for low BMD in elite dancers. Sclerostin was significantly increased in dancers compared to controls during the 3-year follow-up (p < 0.05)

    Identification of Shell Colour Pigments in Marine Snails Clanculus pharaonius and C. margaritarius (Trochoidea; Gastropoda)

    Get PDF
    This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. https://creativecommons.org/publicdomain/zero/1.0/ The attached file is the published version of the article

    A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque

    Get PDF
    [EN] Noradrenaline is believed to support cognitive flexibility through the alpha 2A noradrenergic receptor (a2A-NAR) acting in prefrontal cortex. Enhanced flexibility has been inferred from improved working memory with the a2A-NA agonist Guanfacine. But it has been unclear whether Guanfacine improves specific attention and learning mechanisms beyond working memory, and whether the drug effects can be formalized computationally to allow single subject predictions. We tested and confirmed these suggestions in a case study with a healthy nonhuman primate performing a feature-based reversal learning task evaluating performance using Bayesian and Reinforcement learning models. In an initial dose-testing phase we found a Guanfacine dose that increased performance accuracy, decreased distractibility and improved learning. In a second experimental phase using only that dose we examined the faster feature-based reversal learning with Guanfacine with single-subject computational modeling. Parameter estimation suggested that improved learning is not accounted for by varying a single reinforcement learning mechanism, but by changing the set of parameter values to higher learning rates and stronger suppression of non-chosen over chosen feature information. These findings provide an important starting point for developing nonhuman primate models to discern the synaptic mechanisms of attention and learning functions within the context of a computational neuropsychiatry framework.This research was supported by grants from the Canadian Institutes of Health Research (CIHR), the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Ontario Ministry of Economic Development and Innovation (MEDI). We thank Dr. Hongying Wang for invaluable help with drug administration and animal careHassani, SA.; Oemisch, M.; Balcarras, M.; Westendorff, S.; Ardid-Ramírez, JS.; Van Der Meer, MA.; Tiesinga, P.... (2017). A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque. Scientific Reports. 7:1-19. https://doi.org/10.1038/srep40606S1197Arnsten, A. F., Wang, M. J. & Paspalas, C. D. Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron 76, 223–239 (2012).Arnsten, A. F. & Dudley, A. G. Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: Relevance to therapeutic effects in Attention Deficit Hyperactivity Disorder. Behav Brain Funct 1, 2 (2005).Clark, K. L. & Noudoost, B. The role of prefrontal catecholamines in attention and working memory. Front Neural Circuits 8, 33 (2014).Wang, M. et al. Neuronal basis of age-related working memory decline. Nature 476, 210–213 (2011).Wang, M. et al. Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 129, 397–410 (2007).Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28, 403–450 (2005).Yu, A. J. & Dayan, P. Uncertainty, neuromodulation, and attention. Neuron 46, 681–692 (2005).Mather, M., Clewett, D., Sakaki, M. & Harley, C. W. Norepinephrine ignites local hot spots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behav Brain Sci, 1–100, doi: 10.1017/S0140525X15000667 (2015).Amemiya, S. & Redish, A. D. Manipulating Decisiveness in Decision Making: Effects of Clonidine on Hippocampal Search Strategies. J Neurosci 36, 814–827 (2016).Doya, K. Metalearning and neuromodulation. Neural Netw 15, 495–506 (2002).Uhlen, S., Muceniece, R., Rangel, N., Tiger, G. & Wikberg, J. E. Comparison of the binding activities of some drugs on alpha 2A, alpha 2B and alpha 2C-adrenoceptors and non-adrenergic imidazoline sites in the guinea pig. Pharmacology & toxicology 76, 353–364 (1995).Mao, Z. M., Arnsten, A. F. & Li, B. M. Local infusion of an alpha-1 adrenergic agonist into the prefrontal cortex impairs spatial working memory performance in monkeys. Biological psychiatry 46, 1259–1265 (1999).Arnsten, A. F. & Goldman-Rakic, P. S. Analysis of alpha-2 adrenergic agonist effects on the delayed nonmatch-to-sample performance of aged rhesus monkeys. Neurobiol Aging 11, 583–590 (1990).Franowicz, J. S. & Arnsten, A. F. The alpha-2a noradrenergic agonist, guanfacine, improves delayed response performance in young adult rhesus monkeys. Psychopharmacology 136, 8–14 (1998).Caetano, M. S. et al. Noradrenergic control of error perseveration in medial prefrontal cortex. Frontiers in Integrative Neuroscience 6, 125 (2012).Kim, S., Bobeica, I., Gamo, N. J., Arnsten, A. F. & Lee, D. Effects of alpha-2A adrenergic receptor agonist on time and risk preference in primates. Psychopharmacology 219, 363–375 (2012).Seu, E., Lang, A., Rivera, R. J. & Jentsch, J. D. Inhibition of the norepinephrine transporter improves behavioral flexibility in rats and monkeys. Psychopharmacology 202, 505–519 (2009).Kawaura, K., Karasawa, J., Chaki, S. & Hikichi, H. Stimulation of postsynapse adrenergic alpha2A receptor improves attention/cognition performance in an animal model of attention deficit hyperactivity disorder. Behav Brain Res 270, 349–356 (2014).Aoki, C., Go, C. G., Venkatesan, C. & Kurose, H. Perikaryal and synaptic localization of alpha 2A-adrenergic receptor-like immunoreactivity. Brain Res 650, 181–204 (1994).Barth, A. M., Vizi, E. S., Zelles, T. & Lendvai, B. Alpha2-adrenergic receptors modify dendritic spike generation via HCN channels in the prefrontal cortex. J Neurophysiol 99, 394–401 (2008).Ji, X. H., Ji, J. Z., Zhang, H. & Li, B. M. Stimulation of alpha2-adrenoceptors suppresses excitatory synaptic transmission in the medial prefrontal cortex of rat. Neuropsychopharmacology 33, 2263–2271 (2008).Yi, F., Liu, S. S., Luo, F., Zhang, X. H. & Li, B. M. Signaling mechanism underlying alpha2A -adrenergic suppression of excitatory synaptic transmission in the medial prefrontal cortex of rats. Eur J Neurosci 38, 2364–2373 (2013).Engberg, G. & Eriksson, E. Effects of alpha 2-adrenoceptor agonists on locus coeruleus firing rate and brain noradrenaline turnover in N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)-treated rats. Naunyn-Schmiedeberg’s archives of pharmacology 343, 472–477 (1991).Jakala, P. et al. Guanfacine, but not clonidine, improves planning and working memory performance in humans. Neuropsychopharmacology 20, 460–470 (1999).Jakala, P. et al. Guanfacine and clonidine, alpha 2-agonists, improve paired associates learning, but not delayed matching to sample, in humans. Neuropsychopharmacology 20, 119–130 (1999).Muller, U. et al. Lack of effects of guanfacine on executive and memory functions in healthy male volunteers. Psychopharmacology 182, 205–213 (2005).Scahill, L. et al. A placebo-controlled study of guanfacine in the treatment of children with tic disorders and attention deficit hyperactivity disorder. The American journal of psychiatry 158, 1067–1074 (2001).Huys, Q. J. M., Maia, T. V. & Frank, M. J. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci 19, 404–413 (2016).Stephan, K. E. et al. Computational neuroimaging strategies for single patient predictions. NeuroImage in press (2015).Arnsten, A. F., Cai, J. X. & Goldman-Rakic, P. S. The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci 8, 4287–4298 (1988).Callado, L. F. & Stamford, J. A. Alpha2A- but not alpha2B/C-adrenoceptors modulate noradrenaline release in rat locus coeruleus: voltammetric data. Eur J Pharmacol 366, 35–39 (1999).Millan, M. J. et al. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nature reviews. Drug discovery 11, 141–168 (2012).Niv, Y. et al. Reinforcement learning in multidimensional environments relies on attention mechanisms. J Neurosci 35, 8145–8157 (2015).Balcarras, M., Ardid, S., Kaping, D., Everling, S. & Womelsdorf, T. Attentional Selection Can Be Predicted by Reinforcement Learning of Task-relevant Stimulus Features Weighted by Value-independent Stickiness. J Cogn Neurosci 28, 333–349 (2016).Redish, A. D., Jensen, S., Johnson, A. & Kurth-Nelson, Z. Reconciling reinforcement learning models with behavioral extinction and renewal: implications for addiction, relapse, and problem gambling. Psychol Rev 114, 784–805 (2007).Nassar, M. R. et al. Rational regulation of learning dynamics by pupil-linked arousal systems. Nat Neurosci 15, 1040–1046 (2012).O’Reilly, J. X. et al. Dissociable effects of surprise and model update in parietal and anterior cingulate cortex. Proc Natl Acad Sci USA 110, 3660–3669 (2013).Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217–240 (2013).Womelsdorf, T. & Everling, S. Long-Range Attention Networks: Circuit Motifs Underlying Endogenously Controlled Stimulus Selection. Trends Neurosci 38, 682–700 (2015).Yang, Y. et al. Nicotinic alpha7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc Natl Acad Sci USA 110, 12078–12083 (2013).Aston-Jones, G., Rajkowski, J. & Cohen, J. Role of locus coeruleus in attention and behavioral flexibility. Biological psychiatry 46, 1309–1320 (1999).Cole, B. J. & Robbins, T. W. Forebrain norepinephrine: role in controlled information processing in the rat. Neuropsychopharmacology 7, 129–142 (1992).Dalley, J. W., Cardinal, R. N. & Robbins, T. W. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neuroscience and biobehavioral reviews 28, 771–784 (2004).Devauges, V. & Sara, S. J. Activation of the noradrenergic system facilitates an attentional shift in the rat. Behav Brain Res 39, 19–28 (1990).Connor, D. F., Arnsten, A. F., Pearson, G. S. & Greco, G. F. Guanfacine extended release for the treatment of attention-deficit/hyperactivity disorder in children and adolescents. Expert opinion on pharmacotherapy 15, 1601–1610 (2014).Sallee, F. R. et al. Guanfacine extended release in children and adolescents with attention-deficit/hyperactivity disorder: a placebo-controlled trial. J Am Acad Child Adolesc Psychiatry 48, 155–165 (2009).Steere, J. C. & Arnsten, A. F. The alpha-2A noradrenergic receptor agonist guanfacine improves visual object discrimination reversal performance in aged rhesus monkeys. Behav Neurosci 111, 883–891 (1997).Doya, K. Modulators of decision making. Nat Neurosci 11, 410–416 (2008).Wang, X. J. & Krystal, J. H. Computational psychiatry. Neuron 84, 638–654 (2014).Wiecki, T. V. et al. A Computational Cognitive Biomarker for Early-Stage Huntington’s Disease. PLoS One 11, e0148409, doi: 10.1371/journal.pone.0148409 (2016).Huys, Q. J., Pizzagalli, D. A., Bogdan, R. & Dayan, P. Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis. Biol Mood Anxiety Disord 3, 12 (2013).Gershman, S. J. & Niv, Y. Learning latent structure: carving nature at its joints. Curr Opin Neurobiol 20, 251–256 (2010).Voon, V. et al. Disorders of compulsivity: a common bias towards learning habits. Mol Psychiatry 20, 345–352 (2015).Maia, T. V. & Frank, M. J. From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience 14, 154–162 (2011).Adams, R. A., Huys, Q. J. M. & Roiser, J. P. Computational Psychiatry: towards a mathematically informed understanding of mental illness. Journal of Neurology, Neurosurgery, and Psychiatry 87, 53–63 (2015).Schlagenhauf, F. et al. Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. NeuroImage 89, 171–180 (2014).Harlé, K. M. et al. Bayesian neural adjustment of inhibitory control predicts emergence of problem stimulant use. Brain 138, 3413–3426 (2015).Zhang, J. et al. Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson’s disease. Brain 139, 161–173 (2016).Frank, M. J. et al. fMRI and EEG Predictors of Dynamic Decision Parameters during Human Reinforcement Learning. Journal of Neuroscience 35, 485–494 (2015).Smith, A. C. & Brown, E. N. Estimating a state-space model from point process observations. Neural Comput 15, 965–991 (2003).Wilson, R. C. & Niv, Y. Inferring relevance in a changing world. Frontiers in human neuroscience 5, 189 (2011).Rämä, P. et al. Medetomidine, atipamezole, and guanfacine in delayed response performance of aged monkeys. Pharmacology Biochemistry and Behavior 55, 415–422 (1996).Arnsten, A. F. T. & Contant, T. A. Alpha-2 adrenergic agonists decrease distractibility in aged monkeys performing the delayed response task. Psychopharmacology 108, 159–169 (1992).O’Neill, J. et al. Effects of guanfacine on three forms of distraction in the aging macaque. Life Sciences 67, 877–885 (2000).Wang, M., Ji, J.-Z. & Li, B.-M. The α2A-Adrenergic Agonist Guanfacine Improves Visuomotor Associative Learning in Monkeys. Neuropsychopharmacology 29, 86–92 (2004).Witte, E. a. & Marrocco, R. T. Alteration of brain noradrenergic activity in rhesus monkeys affects the alerting component of covert orienting. Psychopharmacology 132, 315–323 (1997).Decamp, E., Clark, K. & Schneider, J. S. Effects of the alpha-2 adrenoceptor agonist guanfacine on attention and working memory in aged non-human primates. European Journal of Neuroscience 34, 1018–1022 (2011)
    corecore