2,641 research outputs found

    Food-induced behavioral sensitization, its cross-sensitization to cocaine and morphine, pharmacological blockade, and effect on food intake

    Get PDF
    Repeated administration of abused drugs sensitizes their stimulant effects and results in a drug-paired environment eliciting conditioned activity. We tested whether food induces similar effects. Food-deprived male mice were given novel food during 30 min tests in a runway (FR group) that measured locomotor activity. Whereas the activity of this group increased with repeated testing, that of a group exposed to the runways but that received the food in the home cage (FH group), or of a group satiated by prefeeding before testing (SAT group), decreased. When exposed to the runways in the absence of food, the paired group was more active than the other groups (conditioned activity); no activity differences were seen in an alternative, non-food-paired, apparatus. Conditioned activity survived a 3-week period without runway exposure. Conditioned activity was selectively reduced by the opiate antagonist naltrexone (10-20 mg/kg) and by the noncompetitive AMPA receptor antagonist GYKI 52466 [1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride] (5-10 mg/kg). The D1 antagonist SCH23390 [R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride] (15-30 microg/kg) and D2 antagonist sulpiride (25-125 mg/kg) reduced activity nonspecifically. A single intraperitoneal dose of cocaine (10 mg/kg) or morphine (20 mg/kg) increased activity compared with saline, the stimulant effect being larger in the FR group, suggesting "cross-sensitization" to these drugs. However, pretreatment with GYKI 52466 or naltrexone at doses that suppressed conditioned activity in FR animals suppressed cross-sensitization to cocaine. When allowed ad libitum access to food in the runway, FR mice consumed more pellets in a time-limited test. Thus, many of the features of behavioral sensitization to drugs can be demonstrated using food reward and may contribute to excessive eating

    Occurrence and extent of hybridisation between the invasive Mallard Duck and native Yellow-billed Duck in South Africa

    Get PDF
    Hybridisation between invasive and native species represents a significant threat to biodiversity. The Mallard Duck (Anas platyrhynchos) is known to hybridise with numerous closely related Anas species in regions where they have been introduced, threatening the genetic integrity of native ducks and in some instances contributing to their extinction risk. Mallard Ducks were introduced into South Africa in the 1940s and are now naturalised and widespread in the country. It has been speculated that Mallard Ducks are hybridising with native Yellow-billed Ducks (A. undulata) in South Africa, but evidence for this remains observational or purely anecdotal. Here we use data from nuclear microsatellite markers and mitochondrial DNA sequencing to show that hybridisation is indeed occuring between these two species. We found evidence for the occurance of hybridisation, mostly as crosses between Mallard Duck hens and Yellow-billed Duck drakes. Surprisingly, our results suggest that introgressive hybridisation is primarily occuring into the invasive Mallard Duck population (mostly Mallard Duck backcrosses were detected), evidenced by directionally-skewed gene flow and sex-biased mating. Whether these findings reflect true assortative mating or a case of Haldane’s rule remains unknown. We also found evidence of high connectivity between Yellow-billed Duck populations, as far as 1000 km apart, in South Africa. Taken together these results suggest that hybrid genotypes can disperse over vast distances between populations and lead to genetic pollution, even in the absence of invasive Mallard Ducks. Active management of Mallard Duck populations has been met by public resistance in some areas in South Africa, partly because of a lack of evidence showing clear impacts by these birds. This study provides some of the first scientifically-documented evidence for such impacts

    Effective Critical Exponents for Dimensional Ccrossover and Quantum Systems from an Environmentally Friendly Renormalization Group

    Get PDF
    Series for the Wilson functions of an ``environmentally friendly'' renormalization group are computed to two loops, for an O(N)O(N) vector model, in terms of the ``floating coupling'', and resummed by the Pad\'e method to yield crossover exponents for finite size and quantum systems. The resulting effective exponents obey all scaling laws, including hyperscaling in terms of an effective dimensionality, {d\ef}=4-\gl, which represents the crossover in the leading irrelevant operator, and are in excellent agreement with known results.Comment: 10 pages of Plain Tex, Postscript figures available upon request from [email protected], preprint numbers THU-93/18, DIAS-STP-93-1

    On the gas temperature in circumstellar disks around A stars

    Get PDF
    In circumstellar disks or shells it is often assumed that gas and dust temperatures are equal where the latter is determined by radiative equilibrium. This paper deals with the question whether this assumption is applicable for tenous circumstellar disks around young A stars. In this paper the thin hydrostatic equilibrium models described by Kamp & Bertoldi (2000) are combined with a detailed heating/cooling balance for the gas. The most important heating and cooling processes are heating through infrared pumping, heating due to the drift velocity of dust grains, and fine structure and molecular line cooling. Throughout the whole disk gas and dust are not efficiently coupled by collisions and hence their temperatures are quite different. Most of the gas in the disk models considered here stays well below 300 K. In the temperature range below 300 K the gas chemistry is not much affected by T_gas and therefore the simplifying approximation T_gas = T_dust can be used for calculating the chemical structure of the disk. Nevertheless the gas temperature is important for the quantitative interpretation of observations, like fine structure and molecular lines.Comment: 16 pages, 31 figures, A&A accepted May 4, 200

    The redshift evolution of bias and baryonic matter distribution

    Get PDF
    We study the distribution of baryonic and luminous matter within the framework of a hierarchical scenario. Using an analytical model for structure formation which has already been checked against observations for galaxies, Lyman-α\alpha clouds, clusters and reionization processes, we present its predictions for the bias of these objects. We describe its dependence on the luminosity (for galaxies or quasars) or the column density (for Lyman-α\alpha absorbers) of the considered objects. We also study its redshift evolution, which can exhibit an intricate behaviour. These astrophysical objects do not trace the dark matter density field, the Lyman-α\alpha forest clouds being undercorrelated and the bright galaxies overcorrelated, while the intermediate class of Lyman-limit systems is seen to sample the matter field quite well. We also present the distribution of baryonic matter over these various objects. We show that light does not trace baryonic mass, since bright galaxies which contain most of the stars only form a small fraction of the mass associated with virialized and cooled halos. We consider two cosmologies: a critical density universe and an open universe. In both cases, our results agree with observations and show that hierarchical scenarios provide a good model for structure formation and can describe a wide range of objects which spans at least the seven orders of magnitude in mass for which data exist. More detailed observations, in particular of the clustering evolution of galaxies, will constrain the astrophysical models involved.Comment: 13 pages, final version published in A&

    In situ measurements of atmospheric O2 and CO2 reveal an unexpected O2 signal over the tropical Atlantic Ocean

    Get PDF
    We present the first meridional transects of atmospheric O2 and CO2 over the Atlantic Ocean. We combine these measurements into the tracer atmospheric potential oxygen (APO), which is a measure of the oceanic contribution to atmospheric O2 variations. Our new in situ measurement system, deployed on board a commercial container ship during 2015, performs as well as or better than existing similar measurement systems. The data show small short-term variability (hours to days), a step-change corresponding to the position of the Intertropical Convergence Zone (ITCZ), and seasonal cycles that vary with latitude. In contrast to data from the Pacific Ocean and to previous modeling studies, our Atlantic Ocean APO data show no significant bulge in the tropics. This difference cannot be accounted for by interannual variability in the position of the ITCZ or the Atlantic Meridional Mode Index and appears to be a persistent feature of the Atlantic Ocean system. Modeled APO using the TM3 atmospheric transport model does exhibit a significant bulge over the Atlantic and overestimates the interhemispheric gradient in APO over the Atlantic Ocean. These results indicate that either there are inaccuracies in the oceanic flux data products in the equatorial Atlantic Ocean region, or that there are atmospheric transport inaccuracies in the model, or a combination of both. Our shipboard O2 and CO2 measurements are ongoing and will reveal the long-term nature of equatorial APO outgassing over the Atlantic as more data become available

    Poly[[μ-(1-ammonio­ethane-1,1-di­yl)bis­(hydrogenphospho­nato)]diaquachloridodisodium]: a powder X-ray diffraction study

    Get PDF
    The title compound, [Na2(C2H8NO6P2)Cl(H2O)2]n, has a polymeric two-dimensional structure extending parallel to (001). The asymmetric unit contains two Na+ cations located on a centre of symmetry and on a mirror plane, respectively, one half of a bis-phospho­nate anion (the entire anion is completed by mirror symmetry), one chloride anion on a mirror plane and one water mol­ecule in general positions. The two Na+ cations exhibit distorted octa­hedral NaCl2O4 coordination polyhedra, each consisting of two deprotonated O atoms of the bis-phospho­nate anion, of two water mol­ecules and of two chloride anions. Strong O—H⋯O hydrogen bonds between the –OH group and one of the free O atoms of the bis-phospho­nate anion connect adjacent layers along [100], supported by N—H⋯Cl inter­actions. Intra­layer O—H⋯O and N—H⋯O hydrogen bonds are also observed

    Understanding the ongoing learning needs of Australian metropolitan, rural and remote paediatricians: Evaluation of a neurology outreach programme

    Get PDF
    Aim: The purpose of this study was to evaluate whether a neurology outreach teaching programme delivered via video-teleconferencing (6 × 60 min live sessions every 6–8 weeks) is acceptable, contributes to understanding and meets the neurology learning needs of Australian paediatricians from metropolitan, rural and remote areas. Methods: A sample of six NSW sites that joined the neurology outreach programme between 2017 and 2019 (Arm 1) and six interstate sites from QLD, WA and TAS who commenced the programme in 2020 (Arm 2) participated. A mixed-methods survey explored participants' learning needs and value of the programme. Results: Forty-six participants submitted programme evaluation surveys (26 arm 1, 20 arm 2); 9 were removed due to insufficient data (n = 37). Quantitative and qualitative data showed the programme was acceptable in format, relevant to practice, appropriate for clinician learning needs, and engaging. Clinicians reported improvement in understanding and confidence. Participants felt more connected/less isolated and up-to-date. Participants reported a positive impact from the programme on approach to neurological problems and ensuing consults, and more differentiated and appropriate paediatric neurology referrals. Conclusion: This study validates the live video-teleconference outreach model as an acceptable, effective and important means of providing continuing neurology education for Australian paediatricians

    Photometric Properties of Ceres from Telescopic Observations using Dawn Framing Camera Color Filters

    Full text link
    The dwarf planet Ceres is likely differentiated similar to the terrestrial planets but with a water/ice dominated mantle and an aqueously altered crust. Detailed modeling of Ceres' phase function has never been performed to understand its surface properties. The Dawn spacecraft began orbital science operations at the dwarf planet in April 2015. We observed Ceres with flight spares of the seven Dawn Framing Camera color filters mounted on ground-based telescopes over the course of three years to model its phase function versus wavelength. Our analysis shows that the modeled geometric albedos derived from both the IAU HG model and the Hapke model are consistent with a flat and featureless spectrum of Ceres, although the values are ~10% higher than previous measurements. Our models also suggest a wavelength dependence of Ceres' phase function. The IAU G-parameter and the Hapke single-particle phase function parameter, g, are both consistent with decreasing (shallower) phase slope with increasing wavelength. Such a wavelength dependence of phase function is consistent with reddening of spectral slope with increasing phase angle, or phase-reddening. This phase reddening is consistent with previous spectra of Ceres obtained at various phase angles archived in the literature, and consistent with the fact that the modeled geometric albedo spectrum of Ceres is the bluest of all spectra because it represents the spectrum at 0 degree phase angle. Ground-based FC color filter lightcurve data are consistent with HST albedo maps confirming that Ceres' lightcurve is dominated by albedo and not shape. We detected a positive correlation between 1.1-micron absorption band depth and geometric albedo suggesting brighter areas on Ceres have absorption bands that are deeper.Comment: 40 pages, 9 figures, 5 tables. Accepted for publication in Icaru
    corecore