214 research outputs found

    Evidence for early Pliocene and late Miocene transgressions in southern Patagonia (Argentina): 87Sr/86Sr ages of the pectinid “Chlamys” actinodes (Sowerby)

    Get PDF
    AbstractNumerical ages based on 87Sr/86Sr dating of calcitic shells belonging to the pectinid “Chlamys” actinodes (Sowerby) document the only late Miocene (Tortonian) sea flooding event in the Austral Basin at Cabo Buentiempo (8.95 ± 0.82 Ma, 2 s.e.), and provide evidence of the first documented early Pliocene (Zanclean) transgression in Argentina recorded at Cañadón Darwin (5.15 ± 0.18 Ma, 2 s.e., Austral Basin) and at Terraces of Cerro Laciar (5.10 ± 0.21 Ma, 2 s.e.), southern San Jorge Basin). The sedimentary rocks deposited during the Tortonian are correlated with the youngest beds deposited by the “Entrerriense Sea” that covered northern Patagonia. The Zanclean marine episode is correlated with the long-term cycle represented in the Southern Hemisphere by the flooding events recorded in Cockburn and James Ross Islands (Antarctica) and in North-Central Chile

    A new constitutive model for prediction of impact rates response of polypropylene

    Get PDF
    This paper proposes a new constitutive model for predicting the impact rates response of polypropylene. Impact rates, as used here, refer to strain rates greater than 1000 1/s. The model is a physically based, three-dimensional constitutive model which incorporates the contributions of the amorphous, crystalline, pseudo-amorphous and entanglement networks to the constitutive response of polypropylene. The model mathematics is based on the well-known Glass-Rubber model originally developed for glassy polymers but the arguments have herein been extended to semi-crystalline polymers. In order to predict the impact rates behaviour of polypropylene, the model exploits the well-known framework of multiple processes yielding of polymers. This work argues that two dominant viscoelastic relaxation processes – the alpha- and beta-processes – can be associated with the yield responses of polypropylene observed at low-rate-dominant and impact-rates dominant loading regimes. Compression test data on polypropylene have been used to validate the model. The study has found that the model predicts quite well the experimentally observed nonlinear rate-dependent impact response of polypropylene

    Stellar population and kinematics of NGC404

    Get PDF
    NGC404 is a nearly face-on nearby low-luminosity lenticular galaxy. Probing its characteristics provides a wealth of information on the details of possible evolution processes of dS0 galaxies which may not be possible in other, more distant objects. In order to study its kinematics and star formation history, we obtained long slit spectroscopy at the OHP 1m93 telescope along the major and minor axes of NGC404. The spectra have a resolution R = 3600 covering a wavelength range from 4600 to 5500 A. The data are fitted against the Pegase.HR stellar population models to derive simultaneously the internal stellar kinematics, ages and metallicities. Firstly, the global properties of the galaxy are analyzed by fitting a single model and to the data and looking at the kinematic variations and SSP equivalent age and metallicities as a function of radius. Afterwards, the stellar populations are decomposed into 4 components that are individually analyzed. NGC404 clearly shows two radial velocity inversions along its major axis. The kinematically decoupled core rotates in the same direction as the neutral hydrogen shell that surrounds the galaxy. We resolved the star formation history in the core of the galaxy ino 4 events: A very young (< 150 Myr, and [Fe/H] = 0.4) component with constant on-going star formation, a second young (430 Myr) component with [Fe/H] = 0.1, an intermediate population (1.7 Gyr) which has [Fe/H] = -0.05 and, finally, an old (12 Gyr) component with [Fe/H] = -1.26. The two young components fade very quickly with radius, leaving only the intermediate and old population at a radius of 25" (370 pc) from the centre. We conclude that NGC404 had a spiral morphology about 1 Gyr ago and that one or many merger events has triggered a morphological transition.Comment: 8 pages, 8 figures, accepted for publication in A&

    A New Coastal Crawler Prototype to Expand the Ecological Monitoring Radius of OBSEA Cabled Observatory

    Get PDF
    The use of marine cabled video observatories with multiparametric environmental data collection capability is becoming relevant for ecological monitoring strategies. Their ecosystem surveying can be enforced in real time, remotely, and continuously, over consecutive days, seasons, and even years. Unfortunately, as most observatories perform such monitoring with fixed cameras, the ecological value of their data is limited to a narrow field of view, possibly not representative of the local habitat heterogeneity. Docked mobile robotic platforms could be used to extend data collection to larger, and hence more ecologically representative areas. Among the various state-of-the-art underwater robotic platforms available, benthic crawlers are excellent candidates to perform ecological monitoring tasks in combination with cabled observatories. Although they are normally used in the deep sea, their high positioning stability, low acoustic signature, and low energetic consumption, especially during stationary phases, make them suitable for coastal operations. In this paper, we present the integration of a benthic crawler into a coastal cabled observatory (OBSEA) to extend its monitoring radius and collect more ecologically representative data. The extension of the monitoring radius was obtained by remotely operating the crawler to enforce back-and-forth drives along specific transects while recording videos with the onboard cameras. The ecological relevance of the monitoring-radius extension was demonstrated by performing a visual census of the species observed with the crawler&rsquo;s cameras in comparison to the observatory&rsquo;s fixed cameras, revealing non-negligible differences. Additionally, the videos recorded from the crawler&rsquo;s cameras during the transects were used to demonstrate an automated photo-mosaic of the seabed for the first time on this class of vehicles. In the present work, the crawler travelled in an area of 40 m away from the OBSEA, producing an extension of the monitoring field of view (FOV), and covering an area approximately 230 times larger than OBSEA&rsquo;s camera. The analysis of the videos obtained from the crawler&rsquo;s and the observatory&rsquo;s cameras revealed differences in the species observed. Future implementation scenarios are also discussed in relation to mission autonomy to perform imaging across spatial heterogeneity gradients around the OBSEA

    Geology of the Alarcon Rise, Southern Gulf of California

    Get PDF
    Meter‐scale AUV bathymetric mapping and ROV sampling of the entire 47 km‐long Alarcon Rise between the Pescadero and Tamayo transforms show that the shallowest inflated portion of the segment hosts all four active hydrothermal vent fields and the youngest, hottest, and highest effusion rate lava flows. This shallowest inflated part is located ∼1/3 of the way between the Tamayo and Pescadero transforms and is paved by a 16 km2 channelized flow that erupted from 9 km of en echelon fissures and is larger than historic flows on the East Pacific Rise or on the Gorda and Juan de Fuca Ridges. Starting ∼5 km south of the Pescadero transform, 6.5 km of the Alarcon Rise is characterized by faulted ridges and domes of fractionated lavas ranging from basaltic andesite to rhyolite with up to 77.3 wt % SiO2. These are the first known rhyolites from the submarine global mid‐ocean ridge system. Silicic lavas range from \u3e11.7 ka, to as young as 1.1 ka. A basalt‐to‐basaltic andesite sequence and an andesite‐to‐dacite‐to‐rhyolite sequence are consistent with crystal fractionation but some intermediate basaltic andesite and andesite formed by mixing basalt with dacite or rhyolite. Magmatism occurred along the bounding Tamayo and Pescadero transforms as extensive channelized flows. The flows erupted from ring faults surrounding uplifted sediment hills inferred to overlie sills. The transforms are transtensional to accommodate magma migration from the adjacent Alarcon Rise

    Geology of the Alarcon Rise, Southern Gulf of California

    Get PDF
    Meter‐scale AUV bathymetric mapping and ROV sampling of the entire 47 km‐long Alarcon Rise between the Pescadero and Tamayo transforms show that the shallowest inflated portion of the segment hosts all four active hydrothermal vent fields and the youngest, hottest, and highest effusion rate lava flows. This shallowest inflated part is located ∼1/3 of the way between the Tamayo and Pescadero transforms and is paved by a 16 km2 channelized flow that erupted from 9 km of en echelon fissures and is larger than historic flows on the East Pacific Rise or on the Gorda and Juan de Fuca Ridges. Starting ∼5 km south of the Pescadero transform, 6.5 km of the Alarcon Rise is characterized by faulted ridges and domes of fractionated lavas ranging from basaltic andesite to rhyolite with up to 77.3 wt % SiO2. These are the first known rhyolites from the submarine global mid‐ocean ridge system. Silicic lavas range from \u3e11.7 ka, to as young as 1.1 ka. A basalt‐to‐basaltic andesite sequence and an andesite‐to‐dacite‐to‐rhyolite sequence are consistent with crystal fractionation but some intermediate basaltic andesite and andesite formed by mixing basalt with dacite or rhyolite. Magmatism occurred along the bounding Tamayo and Pescadero transforms as extensive channelized flows. The flows erupted from ring faults surrounding uplifted sediment hills inferred to overlie sills. The transforms are transtensional to accommodate magma migration from the adjacent Alarcon Rise

    Geology of the Alarcon Rise, Southern Gulf of California

    Get PDF
    Abstract Meter-scale AUV bathymetric mapping and ROV sampling of the entire 47 km-long Alarcon Rise between the Pescadero and Tamayo transforms show that the shallowest inflated portion of the segment hosts all four active hydrothermal vent fields and the youngest, hottest, and highest effusion rate lava flows. This shallowest inflated part is located ~1/3 of the way between the Tamayo and Pescadero transforms and is paved by a 16 km2 channelized flow that erupted from 9 km of en echelon fissures and is larger than historic flows on the East Pacific Rise or on the Gorda and Juan de Fuca Ridges. Starting ~5 km south of the Pescadero transform, 6.5 km of the Alarcon Rise is characterized by faulted ridges and domes of fractionated lavas ranging from basaltic andesite to rhyolite with up to 77.3 wt % SiO2. These are the first known rhyolites from the submarine global mid-ocean ridge system. Silicic lavas range from \u3e11.7 ka, to as young as 1.1 ka. A basalt-to-basaltic andesite sequence and an andesite-to-dacite-to-rhyolite sequence are consistent with crystal fractionation but some intermediate basaltic andesite and andesite formed by mixing basalt with dacite or rhyolite. Magmatism occurred along the bounding Tamayo and Pescadero transforms as extensive channelized flows. The flows erupted from ring faults surrounding uplifted sediment hills inferred to overlie sills. The transforms are transtensional to accommodate magma migration from the adjacent Alarcon Rise. Plain Language Summary This study combines 1 m resolution bathymetry collected using an autonomous underwater vehicle, with chemical compositions of precisely located lava samples and ages of lava flows determined from short sediment cores collected using a remotely operated vehicle. The objective was to determine the history of an entire 47 km long segment of the global mid-ocean ridge system. The ridge segment studied is named the Alarcon Rise and is located at the mouth of the Gulf of California. The Rise is bounded to the north and south by strike-slip faults that offset the Rise from adjacent segments of the spreading ridge system. Such faults are usually thought to be parallel to the direction of seafloor spreading, but these have an oblique component to their movement that makes space for magma to be injected along the faults where it uplifts hills of sediment and sometimes erupts. Most lavas erupted along midocean ridges are basalts, but some highly unusual silica-rich lavas were identified by their rough surface texture and sampled. These lavas include the most silica-rich ones found along the entire global submarine mid-ocean ridge system. They formed, not by melting of nearby continental crust, but from common basalt by extreme amounts of crystallization of minerals, leaving a small volume of remaining high-silica magma. The complete mapping and closely spaced sampling along the Rise show that old ideas indicating a central point of magma delivery from the underlying mantle for each ridge segment followed by shallow transport of the magmas along the ridge are supported by the central distribution of (1) hydrothermally active sites, (2) the youngest, hottest, most fluid lava flows, and (3) the most voluminous lava flows that accumulate to form the shallowest portion of the ridge segment. The study shows how magmas are transported at shallow depths along the ridge and even around the corners in the adjacent faults
    corecore