660 research outputs found
The impact of emotional well-being on long-term recovery and survival in physical illness: a meta-analysis
This meta-analysis synthesized studies on emotional well-being as predictor of the prognosis of physical illness, while in addition evaluating the impact of putative moderators, namely constructs of well-being, health-related outcome, year of publication, follow-up time and methodological quality of the included studies. The search in reference lists and electronic databases (Medline and PsycInfo) identified 17 eligible studies examining the impact of general well-being, positive affect and life satisfaction on recovery and survival in physically ill patients. Meta-analytically combining these studies revealed a Likelihood Ratio of 1.14, indicating a small but significant effect. Higher levels of emotional well-being are beneficial for recovery and survival in physically ill patients. The findings show that emotional well-being predicts long-term prognosis of physical illness. This suggests that enhancement of emotional well-being may improve the prognosis of physical illness, which should be investigated by future research
Synesthesia and Migraine: Case Report
<p>Abstract</p> <p>Background</p> <p>Synesthesia is, as visual migraine aura, a common and fascinating perceptual phenomenon. Here we present a unique case with synesthesias exclusively during visual migraine auras.</p> <p>Case presentation</p> <p>A 40-year-old woman with a cyclic mood disorder had suffered from migraine with visual aura for several years. On several occasions she had experienced "mixing of senses" during the aura phase. Staring at strong bright light she could experience intense taste of lemon with flow from the salivary glands.</p> <p>Conclusion</p> <p>Acquired synesthesia, exclusively coincident with migraine aura, gives support to the idea of an anomalous cortical processing underlying the phenomenon.</p
Characteristics of outdoor falls among older people: A qualitative study
Background Falls are a major threat to older people’s health and wellbeing. Approximately half of falls occur in outdoor environments but little is known about the circumstances in which they occur. We conducted a qualitative study to explore older people’s experiences of outdoor falls to develop understanding of how they may be prevented. Methods We conducted nine focus groups across the UK (England, Wales, and Scotland). Our sample was from urban and rural settings and different environmental landscapes. Participants were aged 65+ and had at least one outdoor fall in the past year. We analysed the data using framework and content analyses. Results Forty-four adults aged 65 – 92 took part and reported their experience of 88 outdoor falls. Outdoor falls occurred in a variety of contexts, though reports suggested the following scenarios may have been more frequent: when crossing a road, in a familiar area, when bystanders were around, and with an unreported or unknown attribution. Most frequently, falls resulted in either minor or moderate injury, feeling embarrassed at the time of the fall, and anxiety about falling again. Ten falls resulted in fracture, but no strong pattern emerged in regard to the contexts of these falls. Anxiety about falling again appeared more prevalent among those that fell in urban settings and who made more visits into their neighbourhood in a typical week. Conclusions This exploratory study has highlighted several aspects of the outdoor environment that may represent risk factors for outdoor falls and associated fear of falling. Health professionals are recommended to consider outdoor environments as well as the home setting when working to prevent falls and increase mobility among older people
Quantum Criticality in Heavy Fermion Metals
Quantum criticality describes the collective fluctuations of matter
undergoing a second-order phase transition at zero temperature. Heavy fermion
metals have in recent years emerged as prototypical systems to study quantum
critical points. There have been considerable efforts, both experimental and
theoretical, which use these magnetic systems to address problems that are
central to the broad understanding of strongly correlated quantum matter. Here,
we summarize some of the basic issues, including i) the extent to which the
quantum criticality in heavy fermion metals goes beyond the standard theory of
order-parameter fluctuations, ii) the nature of the Kondo effect in the quantum
critical regime, iii) the non-Fermi liquid phenomena that accompany quantum
criticality, and iv) the interplay between quantum criticality and
unconventional superconductivity.Comment: (v2) 39 pages, 8 figures; shortened per the editorial mandate; to
appear in Nature Physics. (v1) 43 pages, 8 figures; Non-technical review
article, intended for general readers; the discussion part contains more
specialized topic
Does neighbourhood walkability moderate the effects of mass media communication strategies to promote regular physical activity?
Background: Mass media campaigns are widely used in Australia and elsewhere to promote physical activity among adults. Neighbourhood walkability is consistently shown to be associated with walking and total activity. Campaigns may have different effects on individuals living in high and low walkable neighbourhoods. Purpose: The purpose of this study is to compare pre- and post-campaign cognitive and behavioural impacts of the Heart Foundation’s Find Thirty every day® campaign, in respondents living in high and lower walkable neighbourhoods. Methods: Pre- and post-campaign cross-sectional survey data were linked with objectively measured neighbourhood walkability. Cognitive and behavioural impacts were assessed using logistic regression stratified by walkability. Results: Cognitive impacts were significantly higher post-campaign and consistently higher in respondents in high compared with lower walkable neighbourhoods. Post campaign sufficient activity was significantly higher and transport walking significantly lower, but only in residents of lower walkable areas. Conclusions: Cognitive impacts of mass media physical activity campaigns may be enhanced by living in a more walkable neighbourhood
Transcriptional Activation of c3 and hsp70 as Part of the Immune Response of Acropora millepora to Bacterial Challenges
The impact of disease outbreaks on coral physiology represents an increasing concern for the fitness and resilience of reef ecosystems. Predicting the tolerance of corals to disease relies on an understanding of the coral immune response to pathogenic interactions. This study explored the transcriptional response of two putative immune genes (c3 and c-type lectin) and one stress response gene (hsp70) in the reef building coral, Acropora millepora challenged for 48 hours with bacterial strains, Vibrio coralliilyticus and Alteromonas sp. at concentrations of 106 cells ml-1. Coral fragments challenged with V. coralliilyticus appeared healthy while fragments challenged with Alteromonas sp. showed signs of tissue lesions after 48 hr. Coral-associated bacterial community profiles assessed using denaturing gradient gel electrophoresis changed after challenge by both bacterial strains with the Alteromonas sp. treatment demonstrating the greatest community shift. Transcriptional profiles of c3 and hsp70 increased at 24 hours and correlated with disease signs in the Alteromonas sp. treatment. The expression of hsp70 also showed a significant increase in V. coralliilyticus inoculated corals at 24 h suggesting that even in the absence of disease signs, the microbial inoculum activated a stress response in the coral. C-type lectin did not show a response to any of the bacterial treatments. Increase in gene expression of c3 and hsp70 in corals showing signs of disease indicates their potential involvement in immune and stress response to microbial challenges
Stem diameter and rotational stability in revision total hip arthroplasty: a biomechanical analysis
BACKGROUND: Proximal femoral bone loss during revision hip arthroplasty often requires bypassing the deficient metaphyseal bone to obtain distal fixation. The purpose of this study was to determine the effect of stem diameter and length of diaphyseal contact in achieving rotational stability in revision total hip arthroplasty. METHODS: Twenty-four cadaveric femoral specimens were implanted with a fully porous-coated stem. Two different diameters were tested and the stems were implanted at multiple contact lengths without proximal bone support. Each specimen underwent torsional testing to failure and rotational micromotion was measured at the implant-bone interface. RESULTS: The larger stem diameter demonstrated a greater torsional stability for a given length of cortical contact (p ≤ 0.05). Decreasing length of diaphyseal contact length was associated with less torsional stability. Torsional resistance was inconsistent at 2 cm of depth. CONCLUSION: Larger stem diameters frequently used in revisions may be associated with less diaphyseal contact length to achieve equivalent rotational stability compared to smaller diameter stems. Furthermore, a minimum of 3 cm or 4 cm of diaphyseal contact with a porous-coated stem should be achieved in proximal femoral bone deficiency and will likely be dependent on the stem diameter utilized at the time of surgery
No rapid audiovisual recalibration in adults on the autism spectrum
Autism spectrum disorders (ASD) are characterized by difficulties in social cognition, but are also associated with atypicalities in sensory and perceptual processing. Several groups have reported that autistic individuals show reduced integration of socially relevant audiovisual signals, which may contribute to the higher-order social and cognitive difficulties observed in autism. Here we use a newly devised technique to study instantaneous adaptation to audiovisual asynchrony in autism. Autistic and typical participants were presented with sequences of brief visual and auditory stimuli, varying in asynchrony over a wide range, from 512 ms auditory-lead to 512 ms auditory-lag, and judged whether they seemed to be synchronous. Typical adults showed strong adaptation effects, with trials proceeded by an auditory-lead needing more auditory-lead to seem simultaneous, and vice versa. However, autistic observers showed little or no adaptation, although their simultaneity curves were as narrow as the typical adults. This result supports recent Bayesian models that predict reduced adaptation effects in autism. As rapid audiovisual recalibration may be fundamental for the optimisation of speech comprehension, recalibration problems could render language processing more difficult in autistic individuals, hindering social communication
Influence of Substrates on the Surface Characteristics and Membrane Proteome of Fibrobacter succinogenes S85
Although Fibrobacter succinogenes S85 is one of the most proficient cellulose degrading bacteria among all mesophilic organisms in the rumen of herbivores, the molecular mechanism behind cellulose degradation by this bacterium is not fully elucidated. Previous studies have indicated that cell surface proteins might play a role in adhesion to and subsequent degradation of cellulose in this bacterium. It has also been suggested that cellulose degradation machinery on the surface may be selectively expressed in response to the presence of cellulose. Based on the genome sequence, several models of cellulose degradation have been suggested. The aim of this study is to evaluate the role of the cell envelope proteins in adhesion to cellulose and to gain a better understanding of the subsequent cellulose degradation mechanism in this bacterium. Comparative analysis of the surface (exposed outer membrane) chemistry of the cells grown in glucose, acid-swollen cellulose and microcrystalline cellulose using physico-chemical characterisation techniques such as electrophoretic mobility analysis, microbial adhesion to hydrocarbons assay and Fourier transform infra-red spectroscopy, suggest that adhesion to cellulose is a consequence of an increase in protein display and a concomitant reduction in the cell surface polysaccharides in the presence of cellulose. In order to gain further understanding of the molecular mechanism of cellulose degradation in this bacterium, the cell envelope-associated proteins were enriched using affinity purification and identified by tandem mass spectrometry. In total, 185 cell envelope-associated proteins were confidently identified. Of these, 25 proteins are predicted to be involved in cellulose adhesion and degradation, and 43 proteins are involved in solute transport and energy generation. Our results supports the model that cellulose degradation in F. succinogenes occurs at the outer membrane with active transport of cellodextrins across for further metabolism of cellodextrins to glucose in the periplasmic space and inner cytoplasmic membrane
- …