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Transcriptional Activation of c3 and hsp70 as Part of the
Immune Response of Acropora millepora to Bacterial
Challenges
Tanya Brown1, David Bourne2, Mauricio Rodriguez-Lanetty1*

1Department of Biological Sciences, Florida International University, Miami, Florida, United States of America, 2Australia Institute of Marine Sciences, Townsville,

Queensland, Australia

Abstract

The impact of disease outbreaks on coral physiology represents an increasing concern for the fitness and resilience of reef
ecosystems. Predicting the tolerance of corals to disease relies on an understanding of the coral immune response to
pathogenic interactions. This study explored the transcriptional response of two putative immune genes (c3 and c-type
lectin) and one stress response gene (hsp70) in the reef building coral, Acropora millepora challenged for 48 hours with
bacterial strains, Vibrio coralliilyticus and Alteromonas sp. at concentrations of 106 cells ml-1. Coral fragments challenged with
V. coralliilyticus appeared healthy while fragments challenged with Alteromonas sp. showed signs of tissue lesions after
48 hr. Coral-associated bacterial community profiles assessed using denaturing gradient gel electrophoresis changed after
challenge by both bacterial strains with the Alteromonas sp. treatment demonstrating the greatest community shift.
Transcriptional profiles of c3 and hsp70 increased at 24 hours and correlated with disease signs in the Alteromonas sp.
treatment. The expression of hsp70 also showed a significant increase in V. coralliilyticus inoculated corals at 24 h suggesting
that even in the absence of disease signs, the microbial inoculum activated a stress response in the coral. C-type lectin did
not show a response to any of the bacterial treatments. Increase in gene expression of c3 and hsp70 in corals showing signs
of disease indicates their potential involvement in immune and stress response to microbial challenges.
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Introduction

Coral reefs worldwide are in decline due to natural and

anthropogenic stressors both at the local and global scales [1–4].

An emerging factor contributing to their decline is the outbreak of

destructive diseases caused by bacteria, viruses, protozoa, or fungi

that are observable in the field as lesions or bands of tissue loss

[2,5–7]. However, the causes of many coral diseases still remains

unknown [2,8,9] due to a number of factors including inconsistent

disease descriptions [10], complex host/agent interactions, chal-

lenging experimental systems, and the potential that many

pathogens may not be cultured in the laboratory [2,11].

Microorganisms may be normal components of the reef ecosystem,

though altered environmental conditions may shift benign

organisms to pathogenic roles via the expression of virulence

factors [8]. The best studied example is the Vibrio shiloi infection of

the Mediterranean coral Oculina patagonica where bacterial

virulence is enhanced by increased seawater temperatures,

resulting in coral bleaching [9,12,13]. Increases in seawater

temperatures might also compromise the immune system in corals

and therefore affect their ability to fight infections, particularly

those corals that have undergone bleaching due to thermal stress

[14–16]. It remains unknown whether environmental stress (e.g.

increased water temperatures or eutrophication) taxes the coral

host metabolically, thus increasing its disease susceptibility. A

better understanding of the actual mechanisms employed by corals

to fight and resist disease-causing agents and how host defense

mechanisms are compromised by environmental factors is

required to tease apart these complex interactions.

Though the current understanding of cnidarian and coral

immunity is rudimentary [17], a number of studies have provided

insight into how cnidarians protect themselves from infection

[18,19]. The combination of cellular and humoral factors utilized

to respond to microbial challenges has been shown to vary from

one organism to another. For corals, it has been documented that

mucociliary activity [20,21], skeletal biomineralization [22],

antimicrobial activity [23–25], and melanization and phenolox-

idase activity [16,26] appear to play important roles in the defense

against microbial infectious agents.

Furthermore some cnidarian genes homologous to innate

immune genes from higher metazoans have been identified [27–

33]. However, the functional involvement of these putative

immune genes in cnidarian immunity has not yet been experi-

mentally verified [17]. To avoid falling into the ‘‘homology trap’’

where gene homology is based on the wrong notion of

concordance [17,34], it is now imperative to start characterizing

and confirming the functional role of putative immune homolog

genes identified in the context of coral immune response. Of

particular interest in this study are two putative coral immune
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genes: c3 and mannose-binding c-type lectin, which have been shown to

be involved in the immune repertoire of other biological model

systems. Additionally a heat stress response gene, hsp70, was

assessed due to the general importance of stress core genes in the

response of organisms to a large number of biological and abiotic

stressors [35].

The complement system is an important element of the

complement cascade that has been well documented in higher

metazoans and is involved in opsonization of pathogens,

chemotaxis and activation of leukocytes, and direct killing of

pathogens [36–38]. In some invertebrates such as in the horseshoe

crab, Carcinoscorpius rotundicausaa, an opsonization role has been

described for a homolog of complement C3-like protein [39]. In

cnidarians, several c3 homolog genes have been identified from

transcriptome sequencing projects including the octocoral Swiftia

[29], the scleractinian Acropora millepora [27], the sea anemones

Nematostella vectensis [40], and Aiptasia pallida [32]. Despite this, the

function and involvement of C3-like proteins in cnidarian

immunity, remains untested.

Another important component of the immune repertoire in

both vertebrate and invertebrate organisms are carbohydrate–

based recognition receptors such as C-type lectins [36,41]. C-type

lectins bind to glycans and thus play a role in biological processes

such as cell-cell adhesion, pathogen recognition, bacterial cell wall

recognition, and phagocytosis [36,41]. Identified lectin homologs

in cnidarians contain extensive sequence variation, which may

indicate the potential to bind bacterial pathogens [33]. For

example, in the anemone Nematostella vectensis, 92 putative c-type

lectin genes have been described [33]. However, the connection of

many of these c-type lectin proteins with respect to the immune

functional response of corals to microbial agents has not been

established.

Heat shock protein expression increases after exposure to

abiotic stressors including heat or cold challenges and biotic

challenges during infection and disease development [42,43]. The

involvement of these proteins in the immune system has also been

widely reported in higher metazoans showing a connection to the

activation of the innate complement system [44]. For instance,

human HSP70 activates the Toll/IL-1 receptor signaling pathway

during a highly inflammatory response [42,43]. Moreover,

accumulation of Hsp70 following sub-lethal thermal treatments

in the invertebrate Artemia franciscana appears to provide protection

against subsequent pathogen challenges [43,45]. The involvement

of coral hsp70 has been clearly shown in the response to thermal

challenges [31,46,47]; however its implication in coral immunity is

still unknown.

This study investigated the transcriptional changes of the three

genes of interest c3, mannose-binding c-type lectin, and hsp70 from the

widely distributed Indo-Pacific coral Acropora millepora. Challenges

were conducted using the identified coral bacterial pathogen,

Vibrio coralliilyticus and a potential pathogen, Alteromonas sp. The

actual functional involvement of these putative immune genes in

corals during the defense response to infectious agents has not

been experimentally verified and it is imperative to characterize

and confirm these functional roles in the context of coral immune

response [17].

Materials and Methods

Coral Collection and Acclimation
Two adult A. millepora coral colonies were collected from reefs

around Orpheus Island (18u379060S 146u299370E) in the inner

central section of the Great Barrier Reef. Coral nubbins 4–5 cm in

length were fragmented from the adult coral colonies and

acclimatized for five weeks in outdoor 5000-L aquaria under

natural light conditions at the Australian Institute of Marine

Sciences (Townsville, Australia). Coral nubbins were then placed

in experimental aquarium tanks and allowed to recover from the

mechanical manipulation for eight days prior to experimental

treatments. Corals in the experiment were collected under the

permit number G09-30237 emitted by the Great Barrier Reef

Marine National Park Authority, Australia.

Bacterial Strains and Culture Preparation
Two bacterial strains were used in this study: Vibrio coralliilyticus

strain LMG 23696, previously identified as a coral pathogen

isolated from Nelly Bay Magnetic Island, Australia [48], and an

Alteromonas species isolated from A. millepora corals also sampled

from Magnetic Island. Vibrio coralliilyticus has been implicated as

one of the causes of white syndrome disease in Acropora corals

[11,48] while Alteromonas spp. have been correlated with disease

and also a normal resident of the mucus layer [49,50,51,52,53]

and skeleton [53,54]. The 16S rRNA gene sequences for each

strain are deposited in the GenBank database under the following

accession numbers, EU372917 and GU903232 respectively.

Bacterial strains were recovered from glycerol stocks and

inoculated into the general heterotrophic bacterial medium,

Marine Broth-2216 (Difco, USA) and grown to end logarithmic

phase at 27uC with shaking (150 rpm). Cultures were centrifuged

at 5,000g for 10 minutes, washed and resuspended in phosphate

buffered saline (PBS). This process was repeated three times to

remove residual culture media. The cells were prepared to a final

concentration of 16109 cells ml-1 in PBS. Bacterial cell density was

determined by counting colony-forming units (CFU; described by

Sussman et al [48]) and by constructing a cell density calibration

curve of absorbance (595 nm) vs. CFU.

Experimental Design of Bacterial Challenge Experiments
Three acclimated coral nubbins were placed in each of nine

replicated 5-L aquarium tanks. Coral nubbins from colony 1 were

placed in three tanks and challenged with Vibrio coralliilyticus.

Nubbins from colony 2 were placed in three other tanks and

challenged with Alteromonas sp. Finally three tanks were allocated

for control corals, each containing 6 nubbins (three from each

colony). Two separate experiments were conducted under this

experimental design, with the treatment group compared to the

control nubbins originating from the same colony. Each 5-L

aquarium was inoculated with the relevant bacterial strain to a

final cell concentration of 16106 cell ml21 in each tank. Bacteria

were not added to control tanks, though a similar volume of PBS

was added since it was used to wash the bacteria before inoculation

in the treatments. The aquaria were operated as a closed system:

seawater was not replaced for the duration of the 48-hour

experiment to avoid potential cross-contamination and release of

bacteria. However, aeration was maintained in the tanks to

provide water movement. Temperature loggers were deployed in

the tanks to assess the temperature fluctuation during the entire

course of the 48-hour experiment. Visual observations of the coral

nubbins were conducted every hour for the first 12 hours and then

every six hours until the end of the experiment.

Nubbins were collected 6 and 24 hours after the bacterial

inoculation. Nubbins could not be collected at 48 hours after

bacterial inoculation since the Alteromonas sp. inoculated nubbins

had very little viable tissue associated with them. At each sampling

time, one coral nubbin from each replicate tank was collected and

immediately snap frozen in liquid nitrogen, and stored at 280uC
until sample processing.

Coral Immune Response to Bacterial Challenges
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A second bacterial challenge experiment was repeated which

corroborated the visual results of the effect of bacterial inoculation

on coral nubbins. All nubbins from this repeat experiment were

fragmented from a single colony and not acclimatized to the light

conditions in the outdoor aquarium facility prior to the

experiment. All other aspects of the experiment were identical to

the first though samples were not collected for subsequent

molecular analysis.

PSII Quantum Yields (Fv/Fm) of Coral Samples
The photosynthetic efficiency (PSII quatum yield) of the

associated symbiotic dinoflagellates (Symbiodinium) from all coral

nubbins (treatments and control) were assessed using a Maxi

imaging-pulse-amplitude-modulation (iPAM) fluorometer (Walz,

Germany) 48 hours after bacterial inoculation. Coral nubbins were

placed in darkness for 20 min and then exposed to a saturation

light pulse (Gain = 1–2, Intensity = 1–2, Saturation Pulse = 7) using

the iPAM. The dark adapted PS II quantum yields were calculated

by using the formula: Fv/Fm= (Fm-F0)/Fm, where Fm=maximal

fluorescent yield, and F0=Dark fluorescent yield.

RNA Isolation, cDNA Preparation, and Gene Expression
Assays by Quantitative PCR
Frozen coral nubbins were pulverized into powder using a

French press under ultra-freezing conditions (, 2120uC). Total
RNA was extracted from approximately 200 mg of frozen

pulverized coral tissue samples using the RNeasy Plant Mini Kit

(Qiagen, Valencia, CA) according to the manufacturer’s protocol.

Concentrations of total RNA were determined using the

NanoDrop ND 1000 UV-Vis Spectrophotometer (NanoDrop

Technologies Inc, Wilmington DE). Integrity of the samples was

checked on MOPS denaturing RNA gels (Embi Tec, San Diego,

CA). Total RNA (250 ng) was reverse transcribed to cDNA using

the QuantiTect reverse transcription kit (Qiagen, Valencia, CA)

according to the manufacturer’s protocol.

Quantitative real time PCR (qPCR) was performed on the three

genes of interest, c3, c-type Lectin, and hsp70 using a Rotor Gene Q1

cycler (Qiagen, Valencia, CA). Several other putative coral

immune genes such as TLR4-like, TLR-23-like, and several isoforms

of C-type lectins were also initially explored but no adequate PCR

oligonucleotide were developed. One microliter from each of the

reverse transcription reactions was used along with the Rotor

Gene SYBR Green PCR master mix (Qiagen, Valencia, CA) to

carry out the qPCR according to the manufacturer’s protocol. The

primers used to amplify each gene are shown in Table 1. Primer

concentrations were optimized for each of the primer pairs,

resulting in the use of 1 mM for c3 and hsp70, and 0.5 mM for c-type

lectin. Additionally, two internal control genes (ICGs), actin [55–57]

and ribosomal protein 12 (rpl12) [56,58], were run simultaneously for

normalization of data using a concentration of 1 mM for both the

forward and reverse primers. Reactions for each gene of interest

and ICGs were performed in triplicate. The comparative delta Ct

method was used to correct for PCR efficiency and determine

relative quantities of the transcript.

RNA Profiling of Coral Associated Bacterial Communities
using Denaturing Gradient Gel Electrophoresis
Total RNA was extracted from coral nubbins collected at 24-

hours post bacterial challenge using methods described previously.

RNA samples (100 ng) were reverse transcribed using the

QuantiTect reverse transcription kit (Qiagen) with 1 mM of the

modified bacterial specific primer 907R

(CCTACGGGDGGCWGCAG) [59]. After reverse transcription,

samples were amplified in 50 ml reactions using GoTaq Green

Master Mix (Promega, Madison, Wisconsin, USA) with 2.5 mM

MgCl2, 0.25 mM 907R, and 0.75 mM 341F-Clamp

(CGCCCGCCGCGCCCCGCGCCCGTCCCGCCGCCCCC-

GCCCGCCTACGGGDGGCWGCAG) [59]. The PCR pro-

gram was as follows: 5 minute initial denaturation at 95uC,
followed by 35 cycles of 95uC for 30 seconds, 51uC for 60 seconds,

and 72uC for 60 seconds, and a final extension for 7 minutes. The

PCR products were run on DGGE using a 6% acrylimide

denaturing gradient gel (30–65% gradient) for 14 hours at 97 volts

at a constant temperature of 60uC.
Bands of interest were excised from the gel and incubated at

room temperature for 24 hours in 30 ml nuclease–free water

followed by recovery of the DNA by ethanol precipitation.

Samples were resuspended in 30 ml nuclease-free water and 1 ml of
the sample was used in a 25 mL PCR reaction using GoTaq Green

Master Mix (Promega, Madison, Wisconsin, USA), 0.25 mM of

both 341F and 907R that did not contain a GC clamp. The PCR

cycle was as follows: 5 minute initial denaturation at 95uC,
followed by 35 cycles of 95uC for 30 seconds, 51uC for 60 seconds,

and 72uC for 60 seconds, and a 7 minute final extension. PCR

products were directly sequenced by the DNA Analysis Facility at

Yale University (New Haven, Connecticut, USA) using the 907R

primer. Recovered sequence identity was assessed using a BLAST

comparison in GenBank and a check for chimeras was carried out

using Greengenes Bellepheron database [60].

Statistical Analysis
Data that were not homoscedastic were transformed prior to

downstream analysis. Statistical analyses of the gene expression

data were performed on each of the genes of interest using the

relative copy numbers normalized to the geometric mean of the

two internal control genes following the approach by Vandesom-

pele et al [61] and Rodriguez-Lanetty et al. [56]. Significant

differences in gene expression among treatments (bacterial

treatments vs. control) and across time (6 and 24 h) were tested

with a two-way ANOVA (SAS, Cary, NC). Comparisons were

only executed within bacterial treatments (i.e. within the

Alteromonas treatment and separately within the V. coralliilyticus

treatment) since separate colonies were used in each treatment.

DGGE gel images were digitized using Gel2K [62] in order to

create a presence/absence matrix. This data was analyzed with a

Table 1. Forward and reverse primers used to amplify the
following genes of interest (GOI), including internal control
genes (ICG), in Q-RT-PCR assays.

Gene PCR Product Primer Sequence (59 to 39)

c3 96 bp For: GTGAAGGTGGAACCAGAGGA

Rev: GAACCGGAAGTGATTGTCGT

c-type lectin 230 bp For: CAGGTCTGGATCGGACTCAT

Rev: CATGTCCAGTGGTTGTACGC

hsp70 128 bp For: GAGCCCTCAGTAACCAGCAC

Rev: CATTGTGGAGCGGAAAAGTT

rpl12 (ICG) 150 bp For: CAAGGCAACACAAGACTGGA

Rev: CTTGCGATCTTGGTGGTT

Actin (ICG) 113 bp For: CTCTTCCCCATGCCATCTTA

Rev: TTGATGTCTCGCACGATCTC

doi:10.1371/journal.pone.0067246.t001

Coral Immune Response to Bacterial Challenges
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correspondence analysis and was performed using the Vegan

package for the R environment [63,64].
Results

Response of Acropora Millepora Corals to Bacterial
Challenge
No bleaching or visible lesions were observed on A. millepora

nubbins challenged with V. coralliilyticus (16106 bacteria ml21;

Figure 1. Photographs of Acropora millepora coral nubbins from the first experiment at 48 hours after bacterial inoculation. A: corals
challenged with Vibrio coralliilyticus; B: corals challenged with Alteromonas sp. Photographs of coral nubbins from the second experiment at 48 hours
after inoculation with Alteromonas sp. at different concentrations. C: 106 CFU/ml; D: 105 CFU/ml, and E:104 CFU/ml.
doi:10.1371/journal.pone.0067246.g001

Coral Immune Response to Bacterial Challenges
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Fig. 1A) or the control treatments throughout a 48-hour bacterial

challenge experiment. In contrast, coral nubbins challenged with

Alteromonas sp. (16106 bacteria ml21), displayed signs of bleaching

and lesions in the coenosarc tissue (tissue between polyps) after 24

hours. By 48 hours, most of the coenosarc and polyp tissue was

degraded in all replicate coral nubbins in this treatment (Fig. 1B).

A repeated experiment resulted in the same results with all coral

nubbins challenged with the Alteromonas sp. showing tissue necrosis

(Fig. 1C), while V. coralliilyticus challenged and control nubbins

displayed no signs of lesions (Figure S1). However, coral nubbins

challenged with lower concentrations of Alteromonas sp. (16105 and

16104 bacteria ml21) did not show signs of lesions and/or

bleaching (Fig. 1D-E).

Photosynthetic efficiency (PSII quantum yield; Fv/Fm) of

symbiotic dinoflagellates (Symbiodinium) was significantly reduced

(one-way ANOVA, p,0.01; Fig. 2) following challenge by

Alteromonas sp., confirming a bacterial effect on the photophysiol-

ogy of the symbiotic dinoflagellates associated with the coral

nubbins. In contrast, nubbins challenged with V. coralliilyticus did

not show a significant difference in photosynthetic efficiency,

indicating that Symbiodinium in these coral nubbins were not

compromised.

No changes of c3 gene expression was detected (two-way

ANOVA, p= 0.146; Fig. 3A) for coral nubbins challenged with V.

coralliilyticus. However, an increase of hsp70 gene expression was

detected at 24 h in the challenged corals compared to the controls

(ANOVA p=0.0149; Fig. 3C). The gene expression of the c-type

lectin in the V. coralliilyticus experiment did not show a response to

the bacterial challenge (2 way ANOVA p=0.9449) but did

decrease significantly between 6 and 24 hours for the controls

(ANOVA, p= 0.0068; Fig. 3E). For coral nubbins challenged with

Alteromonas sp., which showed signs of tissue lesion and disease, a

significant increase of gene expression of c3 was detected from 6

hours to 24 hours (two-way ANOVA, p=0.002, Tukey,

p,0.0001; Fig. 3B). In addition, the increased c3 gene expression

at 24 hours in this Alteromonas sp. bacterial challenge was

significantly higher than controls (Tukey, p,0.0001; Fig. 3B) at

the same time point. Similar to the c3 gene expression, the

transcriptional profile of hsp70 in Alteromonas sp. challenged

nubbins was significantly higher at 24 hours than controls

(ANOVA, p= 0.0159; Fig. 3D). Additionally, no significant

changes were observed in the gene expression profile of control

coral nubbins at 6 and 24 hours for hsp70 (ANOVA, p= 0.3744).

The transcriptional response of the c-type lectin was not affected by

the bacterial challenge (2 way ANOVA p=0.1532) when

compared to the controls but did show a nonsignificant decreasing

trend in expression from 6 to 24 hours (Fig. 3F).

Coral Associated Bacterial Shifts during Challenge
Experiments
Profiling of bacterial communities associated with coral nubbins

using denaturing gradient gel electrophoresis (DGGE) combined

with multivariate correspondence analysis of a presence/absence

matrix for all observed bands, documented shifts in the bacterial

community for Alteromonas sp. challenged corals (Fig. 4; Figure S2).

The bacterial assemblages associated with the Alteromonas treat-

ment clustered separately from all controls, differentiated mainly

by the CA1 axis of the correspondence analysis, which explained

26.9% of the variation (Fig. 4). V. coralliilyticus treatments also

clustered separately from its control by the CA2 axis which

accounted for 20.8% of the variation. Interestingly, the bacterial

community profile associated with the V. coralliilyticus treated

nubbins was similar to the community profiles of control nubbins

for the Alteromonas sp. treatment (Fig4). All bands that were able to

be excised and sequenced from the DGGE are deposited in

Genbank (accession numbers KC313998– KC314010). The

retrieved sequences from both treatments were affiliated within

the Gammaproteobacteria and profiles were consistent across all the

samples, indicative of a stable microbial community. Sequences

affiliated to the genus Endozoicomonas (BLAST identity: 96%

sequence identity over 527 bp) were identified as one of the

dominant members of both microbial communities. None of the

dominant bands in the DGGE represented any species of Vibrio or

Alteromonas sp, corroborating the lack of infection by V. coralliilyticus

in the experiment. An unclassified sequence to the level of genus

but also related to the order of Oceanospirillales (accession

number: AB680857) was retrieved from only corals challenged

with V. coralliilyticus.

Discussion

This study compared the visual tissue disease development and

the transcriptional response of several putative immune genes from

Acropora millepora to challenge from two bacterial strains V.

coralliilyticus, and an Alteromonas sp in two separate experiments.

Transcriptional increases of c3 and hsp70 in the Alteromonas sp.

challenged corals suggest the involvement of these genes in the

immunological/defense response of the coral, A. millepora to

microbial challenge. Corals challenged with V. coralliilyticus did

not show visible signs of disease, however, an increase in hsp70

suggests bacterial inoculation activates a coral host stress response

and implicates heat shock proteins as a critical component in the

early responses of corals to potential infectious agents. The

response likely occurs prior to a strong host immune reaction and

before visible signs of disease is apparent.

C3– like protein has previously been postulated to play a role in

the innate immune system in cnidarians [27,29]. However, this

hypothesis has remained untested due to a lack of functional data.

Findings from this study support the previous hypothesis since the

expression of c3 in A. millepora increased in response to Alteromonas

sp. bacterial challenge. The increase in expression coincided with

visual signs of disease in the coral nubbins at 24. To our

Figure 2. Dark-adapted PSII quantum yield (Fv/Fm) of Symbio-
dinium associated with coral nubbins after 48 hours from the
bacterial inoculation during the second set of experiments.
Error bars indicate standard deviation of the mean. (*) indicates
significance (p,0.05) between that treatment and the control.
doi:10.1371/journal.pone.0067246.g002

Coral Immune Response to Bacterial Challenges
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knowledge, this is the first study to show transcriptional activation

of a cnidarian C3–like protein gene in response to a live microbial

challenge. A previous study in which lipopolysaccharide (LPS) was

injected into A. millepora failed to show a significant response of c3

to the treatment [65]. However, their experimental outcome could

have been due to LPS only being one component involved in

bacterial mediated virulence. This is corroborated in a study in

Drosophila which showed that peptidoglycan – free LPS caused a

seven-fold weaker response than a living Gram – negative

bacterium [66]. This highlights the importance of using a live

pathogen when screening for components involved in the immune

response. The transcriptional upregulation of c3 in response to

microbial challenges reported here, coupled with previous

molecular characterization showing similarity in functionally

critical domain structures and amino acid residues of cnidarian

C3-like protein homologs to those in higher metazoans [27,29,40]

are consistent with a key role of C3-like protein in the immune

response of corals. Additionally, it has previously been demon-

strated that the transcriptional expression of c3 is localized in the

gastrodermal cells [27], the cells lining the gastrovascular cavity

that interact with a vast number of microbes [67]. Further studies

are now required to determine whether C3-like protein has a role

Figure 3. Relative transcriptional expression of the three genes of interest from Acropora millepora at 6 and 24 hours after
inoculation with either V. coralliilyticus or Alteromonas sp. A–B: c3; C-D: hsp70; E–F: c-type lectin. The Q-RT-PCR data for these genes were
normalized using internal control genes (ICGs) indicated in Table 1. Error bars indicate standard deviation of the mean. (*) indicates significance
between treatment and control at the indicated hour. Green bar indicates significance at p,0.01 and orange bar indicates p,0.05.
doi:10.1371/journal.pone.0067246.g003

Coral Immune Response to Bacterial Challenges

PLOS ONE | www.plosone.org 6 July 2013 | Volume 8 | Issue 7 | e67246



in opsonization and pathogen recognition. Unlike the corals

challenged with Alteromonas sp, V. coralliilyticus inoculated coral

nubbins were visibly healthy after 48 hours, with no changes in c3

expression and photosynthetic yield of Symbiodinium being

observed. This suggests that corals were less compromised

physiologically by the bacterial challenge with V. coralliilyticus and

that the inoculation may not have activated a strong immune

response.

Another novel finding from our study is the transcriptional

upregulation of hsp70 detected in both the Alteromonas sp. and V.

coralliilyticus treatments. The expression of heat shock proteins in

general, including Hsp70, have been shown to increase with heat

stress in corals [31,68–79]. Our findings suggest that changes in

hsp70 transcripts also occur in corals in response to microbial

challenges, in the absence of thermal stress. Several studies

conducted on the brine shrimp Artemia have already shown that

heat-induced accumulation of Hsp70 appears to protect Artemia sp.

from pathogenic infection by Vibrio campbellii [43,80]. Recently,

Baruah et al (2011) presented evidence that Hsp70 enhances

resistance to pathogens by priming and enhancing the expression

of the prophenoloxidase system. Prohaszka and Fust (2004)

proposed that extracellular heat shock proteins may represent

the ancestral danger signal of cell death or lysis-activating innate

immunity [81]. In support of this hypothesis, human HSP70 has

been implicated in the antibody-independent activation of the

complement immune system, ultimately interacting with C3 [42].

Thus, in the Alteromonas sp. challenged nubbins, the increased

expression of hsp70 could be a downstream result of pathogen

recognition and subsequent involvement in the immune activation

of a C3– like protein in corals, though this hypothesis requires

further experimental investigation. A different scenario was

observed in V.coralliilyticus with a significant increase of hsp70

transcripts, even when there was no visible sign of disease, but lack

of expression of c3. In this case an increase of Hsp70 proteins

following host/pathogen recognition was potentially sufficient to

protect the coral, possibly by activating other constitutive

components of the coral effector immune systems, such as the

pro-phenoloxidase cascade. These findings highlight the potential

importance of heat shock proteins, in particular Hsp70, as a core

stressor protein useful in assessing coral health status.

Unlike the clear transcriptional response of c3 and hsp70 to

bacterial challenges, the c-type lectin gene examined in this study did

not show a differential change at the transcriptional level to

bacterial treatments. C-type lectins are proteins well known to act

as pattern recognition receptors enhancing pathogen removal

through phagocytosis in invertebrates [41] and/or activation of

the complement system cascade following pathogen recognition in

higher metazoans [37]. Moreover, c-type lectins found in cnidarian

genomes have been shown to have a highly variable substrate-

binding region, suggesting that this domain may recognize a large

range of pathogens [30]. The lack of a significant transcriptional

response of c-type lectin to the bacterial challenges conducted in our

study could be attributed to the timing of sampling. It is possible

that we could have missed an early up-regulation of this gene

within the first six hours after bacterial inoculation. Consistent

with this rationale is the fact that Kvennefors et al (2010)

documented a significant increase in expression of millectin after

only 45 minutes post injection with LPS. After this initial peak,

expression of the gene decreased gradually over the following

twelve hours [65]. This could also explain the fact that we detected

a decreasing trend, though not statistically significant, in the

expression of c-type lectin from 6 to 24 hours in the bacterial

treatments. Further studies are required to confirm whether or not

the c-type lectin explored here plays a role in coral immunity.

A. millepora nubbins exposed to V. coralliilyticus did not exhibit

detectable signs of lesions throughout the 48-hour experimental

period. Pathogen infection trials are highly problematic due to

complex host/pathogen interactions, which are very difficult to

control in aquarium-based environments. One contributing factor

is that V. coralliilyticus has not yet been conclusively identified as a

pathogen of A. millepora and host specificity is important in coral

infections. However, some experimental infections on coral

juveniles suggest that V. corallilyticus can replicate the development

of white syndrome disease in A. millepora [82]. V. coralliilyticus

virulence has also been demonstrated to be water temperature

dependent with virulence being activated at 27–29uC [12,13]. A

study investigating V. coralliilyticus infection of Pocillopora damicornis

demonstrated no lesions for treatments at 25uC [83], temperatures

similar to those used in the bacterial challenges of this study.

Despite the fact that no disease developed during the V. corallilyticus

treatment, this study focused on exploring the gene expression

response of coral to the bacterial challenge itself. Alteromonas sp.

challenged nubbins did show pronounced lesions within 24 hours

of treatment. In corals, Alteromonas sp. has been correlated to

disease but it is also a normal resident of the mucus layer [49,50–

53] and skeleton [53,54]. The bacterium has also been isolated

from the water column surrounding coral colonies indicating that

there may be a specific interaction of the bacterium with the coral

[49,52]. The effect of the bacterium infectivity on coral nubbins

was density dependent with further challenge experiments showing

that an inoculation of 106 CFU/ml caused disease signs whereas

dilutions of 105 and 104 did not. This effect has been documented

in the larvae of the oyster, Crassostrea gigas where a decreased

Alteromonas sp. inocula causes a delayed effect in infectivity

progression [84].

Correspondence analysis of bacterial profiles generated from

DGGE analysis demonstrated that the Alteromonas sp. challenged

corals caused a major shift in the coral associated bacterial

Figure 4. Correspondence analysis (CA) of bacterial 16S rDNA-
DGGE banding patterns. CA1 accounts for 26.9% of the variation;
CA2 accounts for 20.8% of the variation. C-V, control-colony 1 (orange);
C-S, control-colony 2 (blue); V, vibrio treatment (red); A, Alteromonas sp.
treatment (green).
doi:10.1371/journal.pone.0067246.g004
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community away from a stable community observed in control

nubbins. This shift was likely the result of necrosing tissue allowing

colonization of many other opportunistic bacteria, potentially

enhancing a stronger immune response by the coral. Previous

studies have shown similar shifts in the microbial communities

during disease and bleaching events [85]. The V. coralliilyticus

challenged corals also demonstrated a shift in the bacterial

community from its experimental control, though the resultant

community profile was similar to the control group of the

Alteromonas sp. treatment. This result further supports the notion

that the bacterial community shift was unlikely to have a

detrimental effect on coral fitness.

Our findings verify, at the transcriptional level, the functional

involvement of C3–like protein and Hsp70 in the immune

response of A. millepora to bacterial challenges. Interestingly, this

is the first study that reports the involvement of a heat shock

protein in the coral immune response. Further studies investigating

whether these genes have a similar role in other coral species are

required along with the characterization and confirmation of the

functional role of these and other putative immune homolog genes

identified in the context of coral immune response. The derived

information is of fundamental importance as functional immune

genes may be used as bioindicators to assess coral health status.

Supporting Information

Figure S1 Photographs of Acropora millepora coral nubbins, from

the second set of experiments, at 48 hours after inoculation with

Vibrio coralliilyticus at different concentrations. A: 104 CFU/ml; B:

105 CFU/ml; C: 106 CFU/ml; and D: control.

(EPS)

Figure S2 Gel-banding profiles of 16S rDNA-PCR-DGGE of

the bacterial communities associated with Acropora millepora coral

nubbins at 24 h after bacterial inoculation. Alteromonas sp. (A);

Vibrio coralliilyticus (V), and controls (C). Green arrows indicate

bands most closely related to Endozoicomonas sp. and orange arrows

to Oceanospirillum beijerinckii.

(EPS)
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