68 research outputs found

    Transcriptional Activation of c3 and hsp70 as Part of the Immune Response of Acropora millepora to Bacterial Challenges

    Get PDF
    The impact of disease outbreaks on coral physiology represents an increasing concern for the fitness and resilience of reef ecosystems. Predicting the tolerance of corals to disease relies on an understanding of the coral immune response to pathogenic interactions. This study explored the transcriptional response of two putative immune genes (c3 and c-type lectin) and one stress response gene (hsp70) in the reef building coral, Acropora millepora challenged for 48 hours with bacterial strains, Vibrio coralliilyticus and Alteromonas sp. at concentrations of 106 cells ml-1. Coral fragments challenged with V. coralliilyticus appeared healthy while fragments challenged with Alteromonas sp. showed signs of tissue lesions after 48 hr. Coral-associated bacterial community profiles assessed using denaturing gradient gel electrophoresis changed after challenge by both bacterial strains with the Alteromonas sp. treatment demonstrating the greatest community shift. Transcriptional profiles of c3 and hsp70 increased at 24 hours and correlated with disease signs in the Alteromonas sp. treatment. The expression of hsp70 also showed a significant increase in V. coralliilyticus inoculated corals at 24 h suggesting that even in the absence of disease signs, the microbial inoculum activated a stress response in the coral. C-type lectin did not show a response to any of the bacterial treatments. Increase in gene expression of c3 and hsp70 in corals showing signs of disease indicates their potential involvement in immune and stress response to microbial challenges

    Production of a reference transcriptome and transcriptomic database (PocilloporaBase) for the cauliflower coral, Pocillopora damicornis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Motivated by the precarious state of the world's coral reefs, there is currently a keen interest in coral transcriptomics. By identifying changes in coral gene expression that are triggered by particular environmental stressors, we can begin to characterize coral stress responses at the molecular level, which should lead to the development of more powerful diagnostic tools for evaluating the health of corals in the field. Furthermore, the identification of genetic variants that are more or less resilient in the face of particular stressors will help us to develop more reliable prognoses for particular coral populations. Toward this end, we performed deep mRNA sequencing of the cauliflower coral, <it>Pocillopora damicornis</it>, a geographically widespread Indo-Pacific species that exhibits a great diversity of colony forms and is able to thrive in habitats subject to a wide range of human impacts. Importantly, <it>P. damicornis </it>is particularly amenable to laboratory culture. We collected specimens from three geographically isolated Hawaiian populations subjected to qualitatively different levels of human impact. We isolated RNA from colony fragments ("nubbins") exposed to four environmental stressors (heat, desiccation, peroxide, and hypo-saline conditions) or control conditions. The RNA was pooled and sequenced using the 454 platform.</p> <p>Description</p> <p>Both the raw reads (n = 1, 116, 551) and the assembled contigs (n = 70, 786; mean length = 836 nucleotides) were deposited in a new publicly available relational database called PocilloporaBase <url>http://www.PocilloporaBase.org</url>. Using BLASTX, 47.2% of the contigs were found to match a sequence in the NCBI database at an E-value threshold of ≤.001; 93.6% of those contigs with matches in the NCBI database appear to be of metazoan origin and 2.3% bacterial origin, while most of the remaining 4.1% match to other eukaryotes, including algae and amoebae.</p> <p>Conclusions</p> <p><it>P. damicornis </it>now joins the handful of coral species for which extensive transcriptomic data are publicly available. Through PocilloporaBase <url>http://www.PocilloporaBase.org</url>, one can obtain assembled contigs and raw reads and query the data according to a wide assortment of attributes including taxonomic origin, PFAM motif, KEGG pathway, and GO annotation.</p

    A summer heat wave decreases the immunocompetence of the mesograzer, Idotea baltica

    Get PDF
    Extreme events associated with global change will impose increasing stress on coastal organisms. How strong biological interactions such as the host–parasite arms-race are modulated by environmental change is largely unknown. The immune system of invertebrates, in particular phagocytosis and phenoloxidase activity response are key defence mechanisms against parasites, yet they may be sensitive to environmental perturbations. We here simulated an extreme event that mimicked the European heat wave in 2003 to investigate the effect of environmental change on the immunocompetence of the mesograzer Idotea baltica. Unlike earlier studies, our experiment aimed at simulation of the natural situation as closely as possible by using long acclimation, a slow increase in temperature and a natural community setting including the animals’ providence with natural food sources (Zostera marina and Fucus vesiculosus). Our results demonstrate that a simulated heat wave results in decreased immunocompetence of the mesograzer Idotea baltica, in particular a drop of phagocytosis by 50%. This suggests that global change has the potential to significantly affect host–parasite interactions

    Consistent Pattern of Local Adaptation during an Experimental Heat Wave in a Pipefish-Trematode Host-Parasite System

    Get PDF
    Extreme climate events such as heat waves are expected to increase in frequency under global change. As one indirect effect, they can alter magnitude and direction of species interactions, for example those between hosts and parasites. We simulated a summer heat wave to investigate how a changing environment affects the interaction between the broad-nosed pipefish (Syngnathus typhle) as a host and its digenean trematode parasite (Cryptocotyle lingua). In a fully reciprocal laboratory infection experiment, pipefish from three different coastal locations were exposed to sympatric and allopatric trematode cercariae. In order to examine whether an extreme climatic event disrupts patterns of locally adapted host-parasite combinations we measured the parasite's transmission success as well as the host's adaptive and innate immune defence under control and heat wave conditions. Independent of temperature, sympatric cercariae were always more successful than allopatric ones, indicating that parasites are locally adapted to their hosts. Hosts suffered from heat stress as suggested by fewer cells of the adaptive immune system (lymphocytes) compared to the same groups that were kept at 18°C. However, the proportion of the innate immune cells (monocytes) was higher in the 18°C water. Contrary to our expectations, no interaction between host immune defence, parasite infectivity and temperature stress were found, nor did the pattern of local adaptation change due to increased water temperature. Thus, in this host-parasite interaction, the sympatric parasite keeps ahead of the coevolutionary dynamics across sites, even under increasing temperatures as expected under marine global warming

    Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    Get PDF
    Despite the importance of deep-sea corals, our current understanding of their ecology and evolutionis limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent reevaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea. As such, our data provides direction for future research and further insight to organismal response of deep sea coral to environmental change and ocean warming.Tis work was supported by King Abdullah University of Science and Technology (KAUST), baseline funds to CRV and Center Competitive Funding (CCF) Program FCC/1/1973-18-01

    Development of Gene Expression Markers of Acute Heat-Light Stress in Reef-Building Corals of the Genus Porites

    Get PDF
    Coral reefs are declining worldwide due to increased incidence of climate-induced coral bleaching, which will have widespread biodiversity and economic impacts. A simple method to measure the sub-bleaching level of heat-light stress experienced by corals would greatly inform reef management practices by making it possible to assess the distribution of bleaching risks among individual reef sites. Gene expression analysis based on quantitative PCR (qPCR) can be used as a diagnostic tool to determine coral condition in situ. We evaluated the expression of 13 candidate genes during heat-light stress in a common Caribbean coral Porites astreoides, and observed strong and consistent changes in gene expression in two independent experiments. Furthermore, we found that the apparent return to baseline expression levels during a recovery phase was rapid, despite visible signs of colony bleaching. We show that the response to acute heat-light stress in P. astreoides can be monitored by measuring the difference in expression of only two genes: Hsp16 and actin. We demonstrate that this assay discriminates between corals sampled from two field sites experiencing different temperatures. We also show that the assay is applicable to an Indo-Pacific congener, P. lobata, and therefore could potentially be used to diagnose acute heat-light stress on coral reefs worldwide

    Climate Change, Coral Reef Ecosystems, and Management Options for Marine Protected Areas

    Get PDF
    Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more “traditional” stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation
    corecore