1,291 research outputs found

    Hard thermal loops for soft or collinear external momenta

    Full text link
    We consider finite temperature 1-loop diagrams with hard loop momenta and an arbitrary number of external gauge fields when the external momenta are either soft, or near the light cone and nearly collinear with the loop momentum. We obtain a recursion relation for these diagrams which we translate into an equation for their generating functional. By integrating out the soft fields while keeping two collinear ones we find an integral equation, originally due to Arnold, Moore, and Yaffe, which sums the bremsstrahlung and pair annihilation contribution to the thermal photon production rate.Comment: 17 pages, title corrected, clarifying paragraph added to the appendix, version to appear in JHE

    Bjorken Flow, Plasma Instabilities, and Thermalization

    Full text link
    At asymptotically high energies, thermalization in heavy ion collisions can be described via weak-coupling QCD. We present a complete treatment of how thermalization proceeds, at the parametric weak-coupling level. We show that plasma instabilities dominate the dynamics, from immediately after the collision until well after the plasma becomes nearly in equilibrium. Initially they drive the system close to isotropy, but Bjorken expansion and increasing diluteness makes the system again become more anisotropic. At time \tau ~ \alpha^(-12/5) Q^(-1) the dynamics become dominated by a nearly-thermal bath; and at time \tau ~ \alpha^(-5/2) Q^(-1)$ the bath comes to dominate the energy density, completing thermalization. After this time there is a nearly isotropic and thermal Quark-Gluon Plasma.Comment: 22 pages, 5 figure

    Thermalization in Weakly Coupled Nonabelian Plasmas

    Full text link
    We investigate how relativistic, nonabelian plasmas approach equilibrium in a general context. Our treatment is entirely parametric and for small Yang-Mills coupling α\alpha. First we study isotropic systems with an initially nonequilibrium momentum distribution. We consider both the case of initially very high occupancy and initially very low occupancy. Then we consider systems which are anisotropic. We consider both weak anisotropy and large anisotropy, and allow the occupancy to be parametrically large or small. Writing the typical momentum of an initial excitation as Q and the final temperature as T, full equilibration occurs in a time t ~ \alpha^{-2}/T for T > Q, and t ~ \alpha^{-2} Q^{1/2} T^{-3/2} for T < Q, unless the initial system is sufficiently anisotropic and T > \alpha^{2/3} Q, in which case equilibration occurs somewhat faster, t ~ \alpha^{-13/7} Q^{5/7} T^{-12/7} (or \alpha^{-2}/T if that is longer).Comment: 55 pages including many figures, but with a comprehensive review of results in the first 6 pages

    Revolutionizing Stroke Recovery: Unveiling the Promise of Stem Cell Therapy

    Get PDF
    Leonidas D Panos,1,2 Panagiotis Bargiotas,2 Marcel Arnold,1 Georgios Hadjigeorgiou,2 Georgios D Panos3,4 1Department of Neurology, Bern University Hospital Inselspital, Bern, Switzerland; 2Department of Neurology, School of Medicine, University of Cyprus, Nicosia, Cyprus; 3Department of Ophthalmology, Queen’s Medical Centre, Nottingham University Hospitals (NUH), Nottingham, UK; 4Division of Ophthalmology and Visual Sciences, School of Medicine, University of Nottingham, Nottingham, UKCorrespondence: Leonidas D Panos, Department of Neurology, Bern University Hospital “Inselspital”, Freiburgstrasse 16, Bern, 3010, Switzerland, Tel +41 31 632 70 00, Email [email protected] Georgios D Panos, Department of Ophthalmology, Queen’s Medical Centre, NUH, Derby Road, Lenton, Nottingham, NG7 2UH, UK, Tel +44 115 924 9924, Email [email protected]: Stem cells, renowned for their unique regenerative capabilities, present significant hope in treating stroke, a major cause of disability globally. This review offers a detailed analysis of stem cell applications in stroke (ischemic and hemorrhagic) recovery. It examines therapies based on autologous (patient-derived), allogeneic (donor-derived), and Granulocyte-Colony Stimulating Factor (G-CSF) based stem cells, focusing on cell types such as Mesenchymal Stem/Stromal Cells (MSCs), Bone Marrow Mononuclear Stem Cells (BMMSCs), and Neural Stem/Progenitor Cells (NSCs). The paper compiles clinical trial data to evaluate their effectiveness and safety and addresses the ethical concerns of these innovative treatments. By explaining the mechanisms of stem cell-induced neurological repair, this review underscores stem cells’ potential in revolutionizing stroke rehabilitation and suggests avenues for future research.Keywords: stem cell therapy, stroke, brain hemorrhage, autologous stem cells transplantation, allogeneic stem cells transplantation, granulocyte-colony stimulating facto

    Three "universal" mesoscopic Josephson effects

    Get PDF
    1. Introduction 2. Supercurrent from Excitation Spectrum 3. Excitation Spectrum from Scattering Matrix 4. Short-Junction Limit 5. Universal Josephson Effects 5.1 Quantum Point Contact 5.2 Quantum Dot 5.3 Disordered Point Contact (Average supercurrent, Supercurrent fluctuations)Comment: 21 pages, 2 figures; legacy revie

    Optimizing the colour and fabric of targets for the control of the tsetse fly Glossina fuscipes fuscipes

    Get PDF
    Background: Most cases of human African trypanosomiasis (HAT) start with a bite from one of the subspecies of Glossina fuscipes. Tsetse use a range of olfactory and visual stimuli to locate their hosts and this response can be exploited to lure tsetse to insecticide-treated targets thereby reducing transmission. To provide a rational basis for cost-effective designs of target, we undertook studies to identify the optimal target colour. Methodology/Principal Findings: On the Chamaunga islands of Lake Victoria , Kenya, studies were made of the numbers of G. fuscipes fuscipes attracted to targets consisting of a panel (25 cm square) of various coloured fabrics flanked by a panel (also 25 cm square) of fine black netting. Both panels were covered with an electrocuting grid to catch tsetse as they contacted the target. The reflectances of the 37 different-coloured cloth panels utilised in the study were measured spectrophotometrically. Catch was positively correlated with percentage reflectance at the blue (460 nm) wavelength and negatively correlated with reflectance at UV (360 nm) and green (520 nm) wavelengths. The best target was subjectively blue, with percentage reflectances of 3%, 29%, and 20% at 360 nm, 460 nm and 520 nm respectively. The worst target was also, subjectively, blue, but with high reflectances at UV (35% reflectance at 360 nm) wavelengths as well as blue (36% reflectance at 460 nm); the best low UV-reflecting blue caught 3Ă— more tsetse than the high UV-reflecting blue. Conclusions/Significance: Insecticide-treated targets to control G. f. fuscipes should be blue with low reflectance in both the UV and green bands of the spectrum. Targets that are subjectively blue will perform poorly if they also reflect UV strongly. The selection of fabrics for targets should be guided by spectral analysis of the cloth across both the spectrum visible to humans and the UV region

    Thermodynamics and Instabilities of a Strongly Coupled Anisotropic Plasma

    Full text link
    We extend our analysis of a IIB supergravity solution dual to a spatially anisotropic finite-temperature N=4 super Yang-Mills plasma. The solution is static, possesses an anisotropic horizon, and is completely regular. The full geometry can be viewed as a renormalization group flow from an AdS geometry in the ultraviolet to a Lifshitz-like geometry in the infrared. The anisotropy can be equivalently understood as resulting from a position-dependent theta-term or from a non-zero number density of dissolved D7-branes. The holographic stress tensor is conserved and anisotropic. The presence of a conformal anomaly plays an important role in the thermodynamics. The phase diagram exhibits homogeneous and inhomogeneous (i.e. mixed) phases. In some regions the homogeneous phase displays instabilities reminiscent of those of weakly coupled plasmas. We comment on similarities with QCD at finite baryon density and with the phenomenon of cavitation.Comment: 62 pages, 13 figures; v2: typos fixed, added reference

    Naturalised Vitis Rootstocks in Europe and Consequences to Native Wild Grapevine

    Get PDF
    The genus Vitis is represented by several coexisting species in Europe. Our study focuses on naturalised rootstocks that originate in viticulture. The consequences of their presence to the landscape and to native European species (Vitis vinifera ssp. silvestris) are evaluated. This study compares ecological traits (seven qualitative and quantitative descriptors) and the genetic diversity (10 SSR markers) of populations of naturalised rootstocks and native wild grapevines. 18 large naturalised rootstock populations were studied in the RhĂ´ne watershed. Wild European grapevines are present in four main habitats (screes, alluvial forests, hedges, and streamside hedges). In contrast, naturalised rootstock populations are mainly located in alluvial forests, but they clearly take advantage of alluvial system dynamics and connectivity at the landscape level. These latter populations appear to reproduce sexually, and show a higher genetic diversity than Vitis vinifera ssp. silvestris. The regrouping of naturalised rootstocks in interconnected populations tends to create active hybrid swarms of rootstocks. The rootstocks show characters of invasive plants. The spread of naturalised rootstocks in the environment, the acceleration of the decline of the European wild grapevine, and the propagation of genes of viticultural interest in natural populations are potential consequences that should be kept in mind when undertaking appropriate management measures
    • …
    corecore