48 research outputs found

    A multidisciplinary approach to identify priority areas for the monitoring of a vulnerable family of fishes in Spanish Marine National Parks

    Get PDF
    Background Syngnathid fishes (Actinopterygii, Syngnathidae) are flagship species strongly associated with seaweed and seagrass habitats. Seahorses and pipefishes are highly vulnerable to anthropogenic and environmental disturbances, but most species are currently Data Deficient according to the IUCN (2019), requiring more biological and ecological research. This study provides the first insights into syngnathid populations in the two marine Spanish National Parks (PNIA—Atlantic- and PNAC—Mediterranean). Fishes were collected periodically, marked, morphologically identified, analysed for size, weight, sex and sexual maturity, and sampled for stable isotope and genetic identification. Due the scarcity of previous information, habitat characteristics were also assessed in PNIA. Results Syngnathid diversity and abundance were low, with two species identified in PNIA (Hippocampus guttulatus and Syngnathus acus) and four in PNAC (S. abaster, S. acus, S. typhle and Nerophis maculatus). Syngnathids from both National Parks (NP) differed isotopically, with much lower δ15N in PNAC than in PNIA. The dominant species were S. abaster in PNAC and S. acus in PNIA. Syngnathids preferred less exposed sites in macroalgal assemblages in PNIA and Cymodocea meadows in PNAC. The occurrence of very large specimens, the absence of small-medium sizes and the isotopic comparison with a nearby population suggest that the population of Syngnathus acus (the dominant syngnathid in PNIA) mainly comprised breeders that migrate seasonally. Mitochondrial cytochrome b sequence variants were detected for H. guttulatus, S. acus, and S. abaster, and a novel 16S rDNA haplotype was obtained in N. maculatus. Our data suggest the presence of a cryptic divergent mitochondrial lineage of Syngnathus abaster species in PNAC. Conclusions This is the first multidisciplinary approach to the study of syngnathids in Spanish marine NPs. Habitat preferences and population characteristics in both NPs differed. Further studies are needed to assess the occurrence of a species complex for S. abaster, discarding potential misidentifications of genus Syngnathus in PNAC, and evaluate migratory events in PNIA. We propose several preferential sites in both NPs for future monitoring of syngnathid populations and some recommendations for their conservation.Postprin

    Transglutaminase 6: a protein associated with central nervous system development and motor function.

    Get PDF
    Transglutaminases (TG) form a family of enzymes that catalyse various post-translational modifications of glutamine residues in proteins and peptides including intra- and intermolecular isopeptide bond formation, esterification and deamidation. We have characterized a novel member of the mammalian TG family, TG6, which is expressed in a human carcinoma cell line with neuronal characteristics and in mouse brain. Besides full-length protein, alternative splicing results in a short variant lacking the second β-barrel domain in man and a variant with truncated β-sandwich domain in mouse. Biochemical data show that TG6 is allosterically regulated by Ca(2+) and guanine nucleotides. Molecular modelling indicates that TG6 could have Ca(2+) and GDP-binding sites related to those of TG3 and TG2, respectively. Localization of mRNA and protein in the mouse identified abundant expression of TG6 in the central nervous system. Analysis of its temporal and spatial pattern of induction in mouse development indicates an association with neurogenesis. Neuronal expression of TG6 was confirmed by double-labelling of mouse forebrain cells with cell type-specific markers. Induction of differentiation in mouse Neuro 2a cells with NGF or dibutyryl cAMP is associated with an upregulation of TG6 expression. Familial ataxia has recently been linked to mutations in the TGM6 gene. Autoantibodies to TG6 were identified in immune-mediated ataxia in patients with gluten sensitivity. These findings suggest a critical role for TG6 in cortical and cerebellar neurons

    CNTF Mediates Neurotrophic Factor Secretion and Fluid Absorption in Human Retinal Pigment Epithelium

    Get PDF
    Ciliary neurotrophic factor (CNTF) protects photoreceptors and regulates their phototransduction machinery, but little is known about CNTF's effects on retinal pigment epithelial (RPE) physiology. Therefore, we determined the expression and localization of CNTF receptors and the physiological consequence of their activation in primary cultures of human fetal RPE (hfRPE). Cultured hfRPE express CNTF, CT1, and OsM and their receptors, including CNTFRα, LIFRβ, gp130, and OsMRβ, all localized mainly at the apical membrane. Exogenous CNTF, CT1, or OsM induces STAT3 phosphorylation, and OsM also induces the phosphorylation of ERK1/2 (p44/42 MAP kinase). CNTF increases RPE survivability, but not rates of phagocytosis. CNTF increases secretion of NT3 to the apical bath and decreases that of VEGF, IL8, and TGFβ2. It also significantly increases fluid absorption (JV) across intact monolayers of hfRPE by activating CFTR chloride channels at the basolateral membrane. CNTF induces profound changes in RPE cell biology, biochemistry, and physiology, including the increase in cell survival, polarized secretion of cytokines/neurotrophic factors, and the increase in steady-state fluid absorption mediated by JAK/STAT3 signaling. In vivo, these changes, taken together, could serve to regulate the microenvironment around the distal retinal/RPE/Bruch's membrane complex and provide protection against neurodegenerative disease

    A framework for the development of a global standardised marine taxon reference image database (SMarTaR-ID) to support image-based analyses

    Get PDF
    Video and image data are regularly used in the field of benthic ecology to document biodiversity. However, their use is subject to a number of challenges, principally the identification of taxa within the images without associated physical specimens. The challenge of applying traditional taxonomic keys to the identification of fauna from images has led to the development of personal, group, or institution level reference image catalogues of operational taxonomic units (OTUs) or morphospecies. Lack of standardisation among these reference catalogues has led to problems with observer bias and the inability to combine datasets across studies. In addition, lack of a common reference standard is stifling efforts in the application of artificial intelligence to taxon identification. Using the North Atlantic deep sea as a case study, we propose a database structure to facilitate standardisation of morphospecies image catalogues between research groups and support future use in multiple front-end applications. We also propose a framework for coordination of international efforts to develop reference guides for the identification of marine species from images. The proposed structure maps to the Darwin Core standard to allow integration with existing databases. We suggest a management framework where high-level taxonomic groups are curated by a regional team, consisting of both end users and taxonomic experts. We identify a mechanism by which overall quality of data within a common reference guide could be raised over the next decade. Finally, we discuss the role of a common reference standard in advancing marine ecology and supporting sustainable use of this ecosystem
    corecore