129 research outputs found
CMZoom: Survey Overview and First Data Release
We present an overview of the CMZoom survey and its first data release. CMZoom is the first blind, high-resolution survey of the Central Molecular Zone (CMZ; the inner 500 pc of the Milky Way) at wavelengths sensitive to the pre-cursors of high-mass stars. CMZoom is a 500-hour Large Program on the Submillimeter Array (SMA) that mapped at 1.3 mm all of the gas and dust in the CMZ above a molecular hydrogen column density of 10^23 cm^-2 at a resolution of ~3" (0.1 pc). In this paper, we focus on the 1.3 mm dust continuum and its data release, but also describe CMZoom spectral line data which will be released in a forthcoming publication. While CMZoom detected many regions with rich and complex substructure, its key result is an overall deficit in compact substructures on 0.1 - 2 pc scales (the compact dense gas fraction: CDGF). In comparison with clouds in the Galactic disk, the CDGF in the CMZ is substantially lower, despite having much higher average column densities. CMZ clouds with high CDGFs are well-known sites of active star formation. The inability of most gas in the CMZ to form compact substructures is likely responsible for the dearth of star formation in the CMZ, surprising considering its high density. The factors responsible for the low CDGF are not yet understood but are plausibly due to the extreme environment of the CMZ, having far-reaching ramifications for our understanding of the star formation process across the cosmos
Prime movers : mechanochemistry of mitotic kinesins
Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation
Apathy, but Not Depression, Reflects Inefficient Cognitive Strategies in Parkinson's Disease
The relationship between apathy, depression and cognitive impairment in Parkinson's disease (PD) is still controversial. The objective of this study is to investigate whether apathy and depression are associated with inefficient cognitive strategies in PD.In this prospective clinical cohort study conducted in a university-based clinical and research movement disorders center we studied 48 PD patients. Based on clinical evaluation, they were classified in two groups: PD with apathy (PD-A group, n = 23) and PD without apathy (PD-NA group, n = 25). Patients received clinical and neuropsychological evaluations. The clinical evaluation included: Apathy Evaluation Scale-patient version, Hamilton Depression Rating Scale-17 items, the Unified Parkinson's Disease Rating Scale and the Hoehn and Yahr staging system; the neuropsychological evaluation explored speed information processing, attention, working memory, executive function, learning abilities and memory, which included several measures of recall (immediate free, short delay free, long delay free and cued, and total recall).PD-A and PD-NA groups did not differ in age, disease duration, treatment, and motor condition, but differed in recall (p<0.001) and executive tasks (p<0.001). Immediate free recall had the highest predictive value for apathy (F = 10.94; p = 0.002). Depression and apathy had a weak correlation (Pearson index= 0.3; p<0.07), with three items of the depression scale correlating with apathy (Pearson index between .3 and.4; p<0.04). The depressed and non-depressed PD patients within the non-apathetic group did not differ.Apathy, but not depression, is associated with deficit in implementing efficient cognitive strategies. As the implementation of efficient strategies relies on the fronto-striatal circuit, we conclude that apathy, unlike depression, is an early expression of executive impairment in PD
A global transition to ferruginous conditions in the early Neoproterozoic oceans
Eukaryotic life expanded during the Proterozoic eon1, 2.5 to 0.542 billion years ago, against a background of fluctuating ocean chemistry2, 3, 4. After about 1.8 billion years ago, the global ocean is thought to have been characterized by oxygenated surface waters, with anoxic and sulphidic waters in middle depths along productive continental margins and anoxic and iron-containing (ferruginous) deeper waters5, 6, 7. The spatial extent of sulphidic waters probably varied through time5, 6, but this surface-to-deep redox structure is suggested to have persisted until the first Neoproterozoic glaciation about 717 million years ago8, 9, 10, 11. Here we report an analysis of ocean redox conditions throughout the Proterozoic using new and existing iron speciation and sulphur isotope data from multiple cores and outcrops. We find a global transition from sulphidic to ferruginous mid-depth waters in the earliest Neoproterozoic, coincident with the amalgamation of the supercontinent Rodinia at low latitudes. We suggest that ferruginous conditions were initiated by an increase in the oceanic influx of highly reactive iron relative to sulphate, driven by a change in weathering regime and the uptake of sulphate by extensive continental evaporites on Rodinia. We propose that this transition essentially detoxified ocean margin settings, allowing for expanded opportunities for eukaryote diversification following a prolonged evolutionary stasis before one billion years ago
CMZoom IV. Incipient High-Mass Star Formation Throughout the Central Molecular Zone
In this work, we constrain the star-forming properties of all possible sites of incipient high-mass star formation in the Milky Way's Galactic Center. We identify dense structures using the CMZoom 1.3mm dust continuum catalog of objects with typical radii of ~0.1pc, and measure their association with tracers of high-mass star formation. We incorporate compact emission at 8, 21, 24, 25, and 70um from MSX, Spitzer, Herschel, and SOFIA, catalogued young stellar objects, and water and methanol masers to characterize each source. We find an incipient star formation rate (SFR) for the CMZ of ~0.08 M⊙ yr^{-1} over the next few 10^5 yr. We calculate upper and lower limits on the CMZ's incipient SFR of ~0.45 M⊙ yr^{-1} and ~0.05 M⊙ yr^{-1} respectively, spanning between roughly equal to and several times greater than other estimates of CMZ's recent SFR. Despite substantial uncertainties, our results suggest the incipient SFR in the CMZ may be higher than previously estimated. We find that the prevalence of star formation tracers does not correlate with source volume density, but instead ~>75% of high-mass star formation is found in regions above a column density ratio (NSMA/NHerschel) of ~1.5. Finally, we highlight the detection of ``atoll sources'', a reoccurring morphology of cold dust encircling evolved infrared sources, possibly representing HII regions in the process of destroying their envelopes
CMZoom II: Catalog of Compact Submillimeter Dust Continuum Sources in the Milky Way's Central Molecular Zone
In this paper we present the CMZoom Survey's catalog of compact sources (< 10'', ~0.4pc) within the Central Molecular Zone (CMZ). CMZoom is a Submillimeter Array (SMA) large program designed to provide a complete and unbiased map of all high column density gas (N(H) 10 cm) of the innermost 500pc of the Galaxy in the 1.3mm dust continuum. We generate both a robust catalog designed to reduce spurious source detections, and a second catalog with higher completeness, both generated using a pruned dendrogram. In the robust catalog, we report 285 compact sources, or 816 in the high completeness catalog. These sources have effective radii between 0.04-0.4 pc, and are the potential progenitors of star clusters. The masses for both catalogs are dominated by the Sagittarius B2 cloud complex, where masses are likely unreliable due to free-free contamination, uncertain dust temperatures, and line-of-sight confusion. Given the survey selection and completeness, we predict that our robust catalog accounts for more than ~99% of compact substructure capable of forming high mass stars in the CMZ. This catalog provides a crucial foundation for future studies of high mass star formation in the Milky Way's Galactic Center
Single-channel properties of a stretch-sensitive chloride channel in the human mast cell line HMC-1
A stretch-activated (SA) Cl− channel in the plasma membrane of the human mast cell line HMC-1 was identified in outside-out patch-clamp experiments. SA currents, induced by pressure applied to the pipette, exhibited voltage dependence with strong outward rectification (55.1 pS at +100 mV and an about tenfold lower conductance at −100 mV). The probability of the SA channel being open (Po) also showed steep outward rectification and pressure dependence. The open-time distribution was fitted with three components with time constants of τ1o = 755.1 ms, τ2o = 166.4 ms, and τ3o = 16.5 ms at +60 mV. The closed-time distribution also required three components with time constants of τ1c = 661.6 ms, τ2c = 253.2 ms, and τ3c = 5.6 ms at +60 mV. Lowering extracellular Cl− concentration reduced the conductance, shifted the reversal potential toward chloride reversal potential, and decreased the Po at positive potentials. The SA Cl− currents were reversibly blocked by the chloride channel blocker 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) but not by (Z)-1-(p-dimethylaminoethoxyphenyl)-1,2-diphenyl-1-butene (tamoxifen). Furthermore, in HMC-1 cells swelling due to osmotic stress, DIDS could inhibit the increase in intracellular [Ca2+] and degranulation. We conclude that in the HMC-1 cell line, the SA outward currents are mediated by Cl− influx. The SA Cl− channel might contribute to mast cell degranulation caused by mechanical stimuli or accelerate membrane fusion during the degranulation process
Chronic Melatonin Administration Reduced Oxidative Damage and Cellular Senescence in the Hippocampus of a Mouse Model of Down Syndrome
Previous studies have demonstrated that melatonin administration improves spatial learning and memory and hippocampal long-term potentiation in the adult Ts65Dn (TS) mouse, a model of Down syndrome (DS). This functional benefit of melatonin was accompanied by protection from cholinergic neurodegeneration and the attenuation of several hippocampal neuromorphological alterations in TS mice. Because oxidative stress contributes to the progression of cognitive deficits and neurodegeneration in DS, this study evaluates the antioxidant effects of melatonin in the brains of TS mice. Melatonin was administered to TS and control mice from 6 to 12 months of age and its effects on the oxidative state and levels of cellular senescence were evaluated. Melatonin treatment induced antioxidant and antiaging effects in the hippocampus of adult TS mice. Although melatonin administration did not regulate the activities of the main antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase) in the cortex or hippocampus, melatonin decreased protein and lipid oxidative damage by reducing the thiobarbituric acid reactive substances (TBARS) and protein carbonyls (PC) levels in the TS hippocampus due to its ability to act as a free radical scavenger. Consistent with this reduction in oxidative stress, melatonin also decreased hippocampal senescence in TS animals by normalizing the density of senescence-associated â-galactosidase positive cells in the hippocampus. These results showed that this treatment attenuated the oxidative damage and cellular senescence in the brain of TS mice and support the use of melatonin as a potential therapeutic agent for age-related cognitive deficits and neurodegeneration in adults with DS
Genetic Control of Resistance to Trypanosoma brucei brucei Infection in Mice
Trypanosoma brucei are extracellular protozoa transmitted to mammalian host by the tsetse fly. They developed several mechanisms that subvert host's immune defenses. Therefore analysis of genes affecting host's resistance to infection can reveal critical aspects of host-parasite interactions. Trypanosoma brucei brucei infects many animal species including livestock, with particularly severe effects in horses and dogs. Mouse strains differ greatly in susceptibility to T. b. brucei. However, genes controlling susceptibility to this parasite have not been mapped. We analyzed the genetic control of survival after T. b. brucei infection using CcS/Dem recombinant congenic (RC) strains, each of which contains a different random set of 12.5% genes of their donor parental strain STS/A on the BALB/c genetic background. The RC strain CcS-11 is even more susceptible to parasites than BALB/c or STS/A. In F2 hybrids between BALB/c and CcS-11 we detected and mapped four loci, Tbbr1-4 (Trypanosoma brucei brucei response 1–4), that control survival after T. b. brucei infection. Tbbr1 (chromosome 3) and Tbbr2 (chromosome 12) have independent effects, Tbbr3 (chromosome 7) and Tbbr4 (chromosome 19) were detected by their mutual inter-genic interaction. Tbbr2 was precision mapped to a segment of 2.15 Mb that contains 26 genes
- …