1,333 research outputs found
Antimatter signals of singlet scalar dark matter
We consider the singlet scalar model of dark matter and study the expected
antiproton and positron signals from dark matter annihilations. The regions of
the viable parameter space of the model that are excluded by present data are
determined, as well as those regions that will be probed by the forthcoming
experiment AMS-02. In all cases, different propagation models are investigated,
and the possible enhancement due to dark matter substructures is analyzed. We
find that the antiproton signal is more easily detectable than the positron one
over the whole parameter space. For a typical propagation model and without any
boost factor, AMS-02 will be able to probe --via antiprotons-- the singlet
model of dark matter up to masses of 600 GeV. Antiprotons constitute,
therefore, a promising signal to constraint or detect the singlet scalar model.Comment: 24 pages, 8 figures. v2: minor improvements. Accepted for publication
in JCA
Cosmic-ray antiproton constraints on light dark matter candidates
Some direct detection experiments have recently collected excess events that
could be interpreted as a dark matter (DM) signal, pointing to particles in the
10 GeV mass range. We show that scenarios in which DM can self-annihilate
with significant couplings to quarks are likely excluded by the cosmic-ray (CR)
antiproton data, provided the annihilation is S-wave dominated when DM
decouples in the early universe. These limits apply to most of supersymmetric
candidates, eg in the minimal supersymmetric standard model (MSSM) and in the
next-to-MSSM (NMSSM), and more generally to any thermal DM particle with
hadronizing annihilation final states.Comment: Contribution to the proceedings of TAUP-2011 (Munich, 5-9 IX 2011). 4
page
Scalar Multiplet Dark Matter
We perform a systematic study of the phenomenology associated to models where
the dark matter consists in the neutral component of a scalar SU(2)_L n-uplet,
up to n=7. If one includes only the pure gauge induced annihilation
cross-sections it is known that such particles provide good dark matter
candidates, leading to the observed dark matter relic abundance for a
particular value of their mass around the TeV scale. We show that these values
actually become ranges of values -which we determine- if one takes into account
the annihilations induced by the various scalar couplings appearing in these
models. This leads to predictions for both direct and indirect detection
signatures as a function of the dark matter mass within these ranges. Both can
be largely enhanced by the quartic coupling contributions. We also explain how,
if one adds right-handed neutrinos to the scalar doublet case, the results of
this analysis allow to have altogether a viable dark matter candidate,
successful generation of neutrino masses, and leptogenesis in a particularly
minimal way with all new physics at the TeV scale.Comment: 43 pages, 20 figure
Mrk 421, Mrk 501, and 1ES 1426+428 at 100 GeV with the CELESTE Cherenkov Telescope
We have measured the gamma-ray fluxes of the blazars Mrk 421 and Mrk 501 in
the energy range between 50 and 350 GeV (1.2 to 8.3 x 10^25 Hz). The detector,
called CELESTE, used first 40, then 53 heliostats of the former solar facility
"Themis" in the French Pyrenees to collect Cherenkov light generated in
atmospheric particle cascades. The signal from Mrk 421 is often strong. We
compare its flux with previously published multi-wavelength studies and infer
that we are straddling the high energy peak of the spectral energy
distribution. The signal from Mrk 501 in 2000 was weak (3.4 sigma). We obtain
an upper limit on the flux from 1ES 1426+428 of less than half that of the Crab
flux near 100 GeV. The data analysis and understanding of systematic biases
have improved compared to previous work, increasing the detector's sensitivity.Comment: 15 pages, 14 figures, accepted to A&A (July 2006) August 19 --
corrected error in author lis
Human Arm simulation for interactive constrained environment design
During the conceptual and prototype design stage of an industrial product, it
is crucial to take assembly/disassembly and maintenance operations in advance.
A well-designed system should enable relatively easy access of operating
manipulators in the constrained environment and reduce musculoskeletal disorder
risks for those manual handling operations. Trajectory planning comes up as an
important issue for those assembly and maintenance operations under a
constrained environment, since it determines the accessibility and the other
ergonomics issues, such as muscle effort and its related fatigue. In this
paper, a customer-oriented interactive approach is proposed to partially solve
ergonomic related issues encountered during the design stage under a
constrained system for the operator's convenience. Based on a single objective
optimization method, trajectory planning for different operators could be
generated automatically. Meanwhile, a motion capture based method assists the
operator to guide the trajectory planning interactively when either a local
minimum is encountered within the single objective optimization or the operator
prefers guiding the virtual human manually. Besides that, a physical engine is
integrated into this approach to provide physically realistic simulation in
real time manner, so that collision free path and related dynamic information
could be computed to determine further muscle fatigue and accessibility of a
product designComment: International Journal on Interactive Design and Manufacturing
(IJIDeM) (2012) 1-12. arXiv admin note: substantial text overlap with
arXiv:1012.432
Supersymmetry in models with strong on-site Coulomb repulsion - application to t-J model
A supersymmetric way of imposing the constraint of no double occupancy in
models with strong on-site Coulomb repulsion is presented in this paper. In
this formulation the physical operators in the constrainted Hilbert space are
invariant under local unitary transformations mixing boson and fermion
representations. As an illustration the formulation is applied to the
model. The model is studied in the mean-field level in the J=0 limit where we
show how both the slave-boson and slave-fermion formulations are included
naturally in the present approach and how further results beyond both
approaches are obtained.Comment: 12 pages, Latex file, 1 figur
The kinetic dark-mixing in the light of CoGENT and XENON100
Several string or GUT constructions motivate the existence of a dark U(1)_D
gauge boson which interacts with the Standard Model only through its kinetic
mixing. We compute the dark matter abundance in such scenario and the
constraints in the light of the recent data from CoGENT, CDMSII and XENON100.
We show in particular that a region with relatively light WIMPS, M_{Z_D}< 40
GeV and a kinetic mixing 10^-4 < delta < 10^-3 is not yet excluded by the last
experimental data and seems to give promising signals in a near future. We also
compute the value of the kinetic mixing needed to explain the
DAMA/CoGENT/CRESST excesses and find that for M_{Z_D}< 30 GeV, delta ~ 10^-3 is
sufficient to fit with the data.Comment: 6 pages, 5figure
Adaptation to Climate Change: Why is it Needed and How Can it be Implemented?
This is the 3rd study to be published in the CEPS Policy Brief series from ongoing research being carried out for the EU-funded ADAM project (ADaptation And Mitigation strategies: supporting European climate policy). Following an introduction to the aims and objectives of the ADAM project, section 2 sets out the rationales for public policy related to adaptation to the impacts of climatic change in the EU. Section 3 provides evidence from a number of stakeholders and sketches the perception of various actors towards the role of European adaptation policies and climate proofing of sectoral policies. Section 4 on the economics of adaptation argues that the economic impacts of climate change will mainly be reduced by private and autonomous response, while principal challenges are with adaptation needs that require collective action and public engagement, including public finance. Section 5 assesses monetary and socioeconomic risks from extreme weather events in Europe and points to the evidence of rising losses due to weather extremes whilst important knowledge gaps remain to project future risks. And the final section (6) deals with different concepts of uncertainties surrounding climate change and climate variability, and argues for adaptive measures to be sufficiently flexible to allow recalibration as uncertainties are reduced with time
Scheduling access to shared space in multi-robot systems
Through this study, we introduce the idea of applying scheduling techniques to allocate spatial resources that are shared among multiple robots moving in a static environment and having temporal constraints on the arrival time to destinations. To illustrate this idea, we present an exemplified algorithm that plans and assigns a motion path to each robot. The considered problem is particularly challenging because: (i) the robots share the same environment and thus the planner must take into account overlapping paths which cannot happen at the same time; (ii) there are time deadlines thus the planner must deal with temporal constraints; (iii) new requests arrive without a priori knowledge thus the planner must be able to add new paths online and adjust old plans; (iv) the robot motion is subject to noise thus the planner must be reactive to adapt to online changes. We showcase the functioning of the proposed algorithm through a set of agent-based simulations
- …
