30 research outputs found

    Instruments to measure the ability to self-reflect:A systematic review of evidence from workplace and educational settings including health care

    Get PDF
    Introduction: Self-reflection has become recognised as a core skill in dental education, although the ability to self-reflect is valued and measured within several professions. This review appraises the evidence for instruments available to measure the self-reflective ability of adults studying or working within any setting, not just health care. Materials and Methods: A systematic review was conducted of 20 electronic databases (including Medline, ERIC, CINAHL and Business Source Complete) from 1975 to 2017, supplemented by citation searches. Data were extracted from each study and the studies graded against quality indicators by at least two independent reviewers, using a coding sheet. Reviewers completed a utility analysis of the assessment instruments described within included studies, appraising their reported reliability, validity, educational impact, acceptability and cost. Results: A total of 131 studies met the inclusion criteria. Eighteen were judged to provide higher quality evidence for the review and three broad types of instrument were identified, namely: rubrics (or scoring guides), self-reported scales and observed behaviour. Conclusions: Three types of instrument were identified to assess the ability to self-reflect. It was not possible to recommend a single most effective instrument due to under reporting of the criteria necessary for a full utility analysis of each. The use of more than one instrument may therefore be appropriate dependent on the acceptability to the faculty, assessor, student and cost. Future research should report on the utility of assessment instruments and provide guidance on what constitutes thresholds of acceptable or unacceptable ability to self-reflect, and how this should be managed

    The luxS mutation causes loosely-bound biofilms in Shewanella oneidensis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>luxS </it>gene in <it>Shewanella oneidensis </it>was shown to encode an autoinducer-2 (AI-2)-like molecule, the postulated universal bacterial signal, but the impaired biofilm growth of a <it>luxS </it>deficient mutant could not be restored by AI-2, indicating it might not have a signalling role in this organism.</p> <p>Findings</p> <p>Here, we provide further evidence regarding the metabolic role of a <it>luxS </it>mutation in <it>S. oneidensis</it>. We constructed a <it>luxS </it>mutant and compared its phenotype to a wild type control with respect to its ability to remove AI-2 from the medium, expression of secreted proteins and biofilm formation. We show that <it>S. oneidensis </it>has a cell-dependent mechanism by which AI-2 is depleted from the medium by uptake or degradation at the end of the exponential growth phase. As AI-2 depletion is equally active in the <it>luxS </it>mutant and thus does not require AI-2 as an inducer, it appears to be an unspecific mechanism suggesting that AI-2 for <it>S. oneidensis </it>is a metabolite which is imported under nutrient limitation. Secreted proteins were studied by iTraq labelling and liquid chromatography mass spectrometry (LC-MS) detection. Differences between wild type and mutant were small. Proteins related to flagellar and twitching motility were slightly up-regulated in the <it>luxS </it>mutant, in accordance with its loose biofilm structure. An enzyme related to cysteine metabolism was also up-regulated, probably compensating for the lack of the LuxS enzyme. The <it>luxS </it>mutant developed an undifferentiated, loosely-connected biofilm which covered the glass surface more homogenously than the wild type control, which formed compact aggregates with large voids in between.</p> <p>Conclusions</p> <p>The data confirm the role of the LuxS enzyme for biofilm growth in <it>S. oneidensis </it>and make it unlikely that AI-2 has a signalling role in this organism.</p

    Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event

    Get PDF
    The early Earth was characterized by the absence of oxygen in the ocean–atmosphere system, in contrast to the well-oxygenated conditions that prevail today. Atmospheric concentrations first rose to appreciable levels during the Great Oxidation Event, roughly 2.5–2.3 Gyr ago. The evolution of oxygenic photosynthesis is generally accepted to have been the ultimate cause of this rise, but it has proved difficult to constrain the timing of this evolutionary innovation. The oxidation of manganese in the water column requires substantial free oxygen concentrations, and thus any indication that Mn oxides were present in ancient environments would imply that oxygenic photosynthesis was ongoing. Mn oxides are not commonly preserved in ancient rocks, but there is a large fractionation of molybdenum isotopes associated with the sorption of Mo onto the Mn oxides that would be retained. Here we report Mo isotopes from rocks of the Sinqeni Formation, Pongola Supergroup, South Africa. These rocks formed no less than 2.95 Gyr ago in a nearshore setting. The Mo isotopic signature is consistent with interaction with Mn oxides. We therefore infer that oxygen produced through oxygenic photosynthesis began to accumulate in shallow marine settings at least half a billion years before the accumulation of significant levels of atmospheric oxygen
    corecore