207 research outputs found

    Electrical and optical characterisation of low temperature grown InGaAs for photodiode applications

    Get PDF
    Dilute bismide and nitride alloys are promising semiconductors for bandgap engineering, opening additional design freedom for devices such as infrared photodiodes. Low growth temperatures are required to incorporate bismuth or nitrogen into III V semiconductors. However, the effects of low growth temperature on dark current and responsivity are not well understood. In this work, a set of InGaAs p i n wafers were grown at a constant temperature of 250, 300, 400 and 500 °C for all p, i and n layers. A second set of wafers was grown where the p and n layers were grown at 500 °C while the i-layers were grown at 250, 300 and 400 °C. Photodiodes were fabricated from all seven wafers. When constant growth temperature was employed (for all p, i and n layers), we observed that photodiodes grown at 500 °C show dark current density at 1 V that is 6 orders of magnitude lower while the responsivity at an illumination wavelength of 1520 nm is 4.5 times higher than those from photodiodes grown at 250 °C. Results from the second set of wafers suggest that performance degradation can be recovered by growing the p and n layers at high temperature. For instance, comparing photodiodes with i-layers grown at 250 °C, photodiodes showed dark current density at -1 V that is 5 orders of magnitude lower when the p and n layer were grown at 500 °C. Postgrowth annealing, at 595 °C for 15 minutes, on the two wafers grown at 250 and 300 °C showed recovery of diode responsivity but no significant improvement in the dark current. Our work suggests that growth of the cap layer at high temperature is necessary to maintain the responsivity and minimise the dark current degradation, offering a pathway to developing novel photodiode materials that necessitate low growth temperatures

    Integrated Gate and Bus Assignment at Amsterdam Airport Schiphol

    Full text link
    Abstract. At an airport a series of assignment problems need to be solved before aircraft can arrive and depart and passengers can embark and disembark. A lot of different parties are involved with this, each of which having to plan their own schedule. Two of the assignment problems that the ’Regie ’ at Amsterdam Airport Schiphol (AAS) is responsible for, are the gate assignment problem (i.e. where to place which aircraft) and the bus assignment problem (i.e. which bus will transport which passen-gers to or from the aircraft). Currently these two problems are solved in a sequential fashion, the output of the gate assignment problem is used as input for the bus assignment problem. We look at integrating these two sequential problems into one larger problem that considers both prob-lems at the same time. This creates the possibility of using information regarding the bus assignment problem while solving the gate assignment problem. We developed a column generation algorithm for this problem and have implemented a prototype. To make the algorithm efficient we used a special technique called stabilized column generation and also col-umn deletion. Computational experiments with real-life data from AAS indicate that our algorithm is able to compute a planning for one day at Schiphol in a reasonable time

    Larkin-Ovchinnikov-Fulde-Ferrell state in quasi-one-dimensional superconductors

    Full text link
    The properties of a quasi-one-dimensional (quasi-1D) superconductor with {\it an open Fermi surface} are expected to be unusual in a magnetic field. On the one hand, the quasi-1D structure of the Fermi surface strongly favors the formation of a non-uniform state (Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state) in the presence of a magnetic field acting on the electron spins. On the other hand, a magnetic field acting on an open Fermi surface induces a dimensional crossover by confining the electronic wave-functions wave-functions along the chains of highest conductivity, which results in a divergence of the orbital critical field and in a stabilization at low temperature of a cascade of superconducting phases separated by first order transistions. In this paper, we study the phase diagram as a function of the anisotropy. We discuss in details the experimental situation in the quasi-1D organic conductors of the Bechgaard salts family and argue that they appear as good candidates for the observation of the LOFF state, provided that their anisotropy is large enough. Recent experiments on the organic quasi-1D superconductor (TMTSF)2_2ClO4_4 are in agreement with the results obtained in this paper and could be interpreted as a signature of a high-field superconducting phase. We also point out the possibility to observe a LOFF state in some quasi-2D organic superconductors.Comment: 24 pages+17 figures (upon request), RevTex, ORSAY-LPS-24109

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype
    • 

    corecore