1,977 research outputs found

    Search for a Lorentz invariance violation contribution in atmospheric neutrino oscillations using MACRO data

    Full text link
    Neutrino-induced upward-going muons in MACRO have been analysed in terms of relativity principles violating effects, keeping standard mass-induced atmospheric neutrino oscillations as the dominant source of nu_mu -> nu_tau transitions. The data disfavor these exotic possibilities even at a sub-dominant level, and stringent 90% C.L. limits are placed on the Lorentz invariance violation parameter |Delta v| < 6 * 10^(-24) at sin2theta_v = 0 and |Delta v| < 2.5--5 * 10^(-26) at sin2theta_v = +/-1. These limits can also be re-interpreted as upper bounds on the parameters describing violation of the Equivalence Principle.Comment: 8 pages, 2 figures, submitted to Physics Letters

    Magnetic flux jumps in textured Bi2Sr2CaCu2O(8+d)

    Full text link
    Magnetic flux jumps in textured Bi2Sr2CaCu2O(8+d) have been studied by means of magnetization measurements in the temperature range between 1.95 K and Tc, in an external magnetic field up to 9 T. Flux jumps were found in the temperature range 1.95 K - 6 K, with the external magnetic field parallel to the c axis of the investigated sample. The effect of sample history on magnetic flux jumping was studied and it was found to be well accounted for by the available theoretical models. The magnetic field sweep rate strongly influences the flux jumping and this effect was interpreted in terms of the influence of both flux creep and the thermal environment of the sample. Strong flux creep was found in the temperature and magnetic field range where flux jumps occur suggesting a relationship between the two. The heat exchange conditions between the sample and the experimental environment also influence the flux jumping behavior. Both these effects stabilize the sample against flux instabilities, and this stabilizing effect increases with decreasing magnetic field sweep rate. Demagnetizing effects are also shown to have a significant influence on flux jumping.Comment: 10 pages, 6 figures, RevTeX4, submitted to Phys. Rev.

    Improving the eco-efficiency of an agricultural water use system

    Get PDF
    During the last two decades, the concept of eco-efficiency has been recognized as a suitable measure of progress towards a greener and more sustainable economy. The prefix “eco-” refers to both economic and ecological (environmental) performance. The need for improving eco-efficiency leads to the challenge of identifying the most promising alternative solutions which improve both the economic and the environmental performance of a given system (“eco-innovations”). Therefore, it becomes critical to develop eco-efficiency metrics for measuring environmental and economic performance of a system. The current paper presents a methodological framework that attempts to explore the use of eco-efficiency indicators in meso-level water use systems and through them to assess the impact of innovative technologies in such systems. The assessment of the environmental performance follows a life-cycle oriented approach using the midpoint impact categories while the economic performance is measured using the Total Value Added to the product due to water use. The eco-efficiency is expressed as the ratio of the economic performance indicator to the environmental performance indicator. The proposed approach is applied to a water use system of the agricultural sector, and more specifically to the fresh form tomato crop production in Phthiotida. The analysis reveals that the most important environmental impacts of the system are (i) greenhouse gas emissions due to energy consumption, (ii) release of toxic substances, due to the use of fertilizers and pesticides and (iii) depletion of freshwater resources. Three alternative interventions are examined for upgrading the value chain: (i) installation of sub-surface drip irrigation system, (ii) replacement of diesel pumps with solar pumps and (iii) use of organic fertilizers. Based on the findings, all of the proposed interventions have a positive impact on the overall eco-efficiency of the system. Sub-surface drip irrigation is the least favorable mainly due to its high investment cost. The use of solar pumps strongly influences climate change and photochemical ozone formation while the use of organic fertilizers has a more balanced impact on all indicators, with an emphasis on eutrophication. Thus, for a more holistic approach, regarding the eco-efficiency performance, a combined application of these three scenarios may be proposed

    Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope

    Get PDF
    We analyze the timing of photons observed by the MAGIC telescope during a flare of the active galactic nucleus Mkn 501 for a possible correlation with energy, as suggested by some models of quantum gravity (QG), which predict a vacuum refractive index \simeq 1 + (E/M_{QGn})^n, n = 1,2. Parametrizing the delay between gamma-rays of different energies as \Delta t =\pm\tau_l E or \Delta t =\pm\tau_q E^2, we find \tau_l=(0.030\pm0.012) s/GeV at the 2.5-sigma level, and \tau_q=(3.71\pm2.57)x10^{-6} s/GeV^2, respectively. We use these results to establish lower limits M_{QG1} > 0.21x10^{18} GeV and M_{QG2} > 0.26x10^{11} GeV at the 95% C.L. Monte Carlo studies confirm the MAGIC sensitivity to propagation effects at these levels. Thermal plasma effects in the source are negligible, but we cannot exclude the importance of some other source effect.Comment: 12 pages, 3 figures, Phys. Lett. B, reflects published versio

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure

    Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV

    Full text link
    We present the first measurement of directed flow (v1v_1) at RHIC. v1v_1 is found to be consistent with zero at pseudorapidities η\eta from -1.2 to 1.2, then rises to the level of a couple of percent over the range 2.4<η<42.4 < |\eta| < 4. The latter observation is similar to data from NA49 if the SPS rapidities are shifted by the difference in beam rapidity between RHIC and SPS. Back-to-back jets emitted out-of-plane are found to be suppressed more if compared to those emitted in-plane, which is consistent with {\it jet quenching}. Using the scalar product method, we systematically compared azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure

    Azimuthal anisotropy: the higher harmonics

    Full text link
    We report the first observations of the fourth harmonic (v_4) in the azimuthal distribution of particles at RHIC. The measurement was done taking advantage of the large elliptic flow generated at RHIC. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding

    All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators

    Full text link
    We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume, and near-lossless fiber coupling, with a simple and customizable mode structure enabling full tunability. We study, theoretically and experimentally, nonlinear all-optical switching via the Kerr effect when the resonator is operated in an add-drop configuration. This allows us to optically route a single-wavelength cw optical signal between two fiber ports with high efficiency. Finally, we report on progress towards strong coupling of single rubidium atoms to an ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B. Changes according to referee suggestions: minor corrections to some figures and captions, clarification of some points in the text, added references, added new paragraph with results on atom-resonator interactio

    Strange Resonance Production in p+p and Au+Au Collisions at RHIC Energies

    Full text link
    Resonance yields and spectra from elementary p+p and Au+Au collisions at sNN=\sqrt{s_{\rm NN}} = 200 GeV from the STAR experiment at RHIC are presented and discussed in terms of chemical and thermal freeze-out conditions. Thermal models do not adequately describe the yields of the resonance production in central Au+Au collisions. The approach to include elastic hadronic interactions between chemical freeze-out and thermal freeze-out suggests a time of Δτ>\Delta \tau>5 fm/c.Comment: 4 pages, 7 figures, proceedings of the Quark Matter 2004, in Oakland, California, to be published in Journal of Physics G: Nuclear and Particle Physic
    corecore