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Abstract 

 

During the last two decades, the concept of eco-efficiency has been recognized as a suitable 

measure of progress towards a greener and more sustainable economy. The prefix “eco-” refers to 

both economic and ecological (environmental) performance. The need for improving eco-efficiency 

leads to the challenge of identifying the most promising alternative solutions which improve both 

the economic and the environmental performance of a given system (“eco-innovations”). Therefore, 

it becomes critical to develop eco-efficiency metrics for measuring environmental and economic 

performance of a system.  

 

The current paper presents a methodological framework that attempts to explore the use of eco-

efficiency indicators in meso-level water use systems and through them to assess the impact of 

innovative technologies in such systems. The assessment of the environmental performance follows 

a life-cycle oriented approach using the midpoint impact categories while the economic 

performance is measured using the Total Value Added to the product due to water use. The eco-

efficiency is expressed as the ratio of the economic performance indicator to the environmental 

performance indicator. The proposed approach is applied to a water use system of the agricultural 

sector, and more specifically to the fresh form tomato crop production in Phthiotida. 

 

The analysis reveals that the most important environmental impacts of the system are (i) greenhouse 

gas emissions due to energy consumption, (ii) release of toxic substances, due to the use of 

fertilizers and pesticides and (iii) depletion of freshwater resources. Three alternative interventions 

are examined for upgrading the value chain: (i) installation of sub-surface drip irrigation system, (ii) 

replacement of diesel pumps with solar pumps and (iii) use of organic fertilizers.  

 

Based on the findings, all of the proposed interventions have a positive impact on the overall eco-

efficiency of the system. Sub-surface drip irrigation is the least favorable mainly due to its high 

investment cost. The use of solar pumps strongly influences climate change and photochemical 

ozone formation while the use of organic fertilizers has a more balanced impact on all indicators, 

with an emphasis on eutrophication. Thus, for a more holistic approach, regarding the eco-

efficiency performance, a combined application of these three scenarios may be proposed. 

  
Keywords: eco-efficiency, water use systems, agricultural sector 

 

1. INTRODUCTION 

 

The term eco-efficiency was introduced in the late 1980s and appeared in academic literature for the 

first time in 1989 [1]. An official definition was given by the World Business Council for 

Sustainable Development in 1991 and combined the concepts of economic welfare and 

competitiveness with the ecological impact of products throughout their lifecycle, the use of natural 

resources and the environmental carrying capacity [2]. Since then, several definitions have been 

proposed [3], and several studies on eco-efficiency assessment have been carried out on a company 
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[4], business unit [5] or specific product [6, 7] level. Their main objective was to support and to 

guide investment and management decisions in order to achieve maximized profit with minimized 

environmental impacts. 

 

OECD [8] has defined eco-efficiency as the efficiency with which ecological resources are used to 

meet human needs and expressed it as the ratio of an output (the value of products and services 

produced by a firm, sector or economy as a whole) divided by the corresponding input (the sum of 

environmental pressures generated by the firm, the sector or the economy). This definition is more 

generic and has moved the concept of eco-efficiency outside the business context. Since then, eco-

efficiency has become, an important concept of environmental decision making, serving both as a 

policy objective and as a measure of progress towards sustainability, and has been closely linked to 

eco-innovation. It has been applied widely at the macro and the meso level, either focusing on the 

regional [9, 10] and national level [11, 12] or on a specific sector of economic development [13, 

14]. 

 

An eco-efficient agricultural system will produce “more food from less nature” and promote 

sustainable growth while ensuring sufficient amount of food production. In 2002, the European 

Environmental Agency has assessed the eco-efficiency of agriculture on a European level, using a 

set of nine indicators [15]. The study showed that agricultural eco-efficiency was improving slowly 

and highlighted that the most important environmental concerns are the increased use of fertilizers 

and pesticides as well as the emissions of acidifying substances, particularly ammonia. 

 

The need for sustainable agriculture arises from its significance to the humanity and the fact that 

agricultural sector has substantial environmental impact. Improvement of eco-efficiency in 

agriculture may be achieved through various ways. Hiltunen [16] suggested in situ interventions, 

such as plant breeding, smart cultivation, replacement of fossil fuel with renewable energy, reuse 

and recycle. De Jonge [17] implied the need for change at a policy level by adopting integrated pest 

management, sustainable land management practices, and sustainable crop selection. However, the 

difficulty in assessing the eco-efficiency of an agricultural system lies in two factors. Firstly, the 

various characteristics and the local/regional circumstances make it difficult to adjust simulation 

models even between similar crops or regions and to adopt data from the literature. Furthermore, 

the crop yield depends on many inherent imponderables such as water availability, soil’s 

composition and climate conditions that affect the eco-efficiency performance in a non-predictable, 

and often non-linear, way [18]. 

 

Several methodologies have been developed and applied to the estimation of the eco-efficiency of a 

crop or the agricultural sector in a region. De Jonge [17] focused on enhancing the understanding of 

eco-efficiency, eco-innovation and sustainable agriculture, by applying product-oriented Life Cycle 

Analysis (LCA) methods. The functional unit is the amount of pesticide needed to treat one hectare 

of citrus crop. Eco-efficiency is defined as the ratio of the served function, expressed in hectares 

treated for the certain disease in a certain time, and the environmental impact, expressed in primary 

energy consumption and three toxicity related indicators. The analysis was applied in a citrus grove 

in Florida by comparing two types of fungicides suitable for this crop’s parasites, and concluded 

that the more innovative type of fungicide will improve the eco-efficiency of the system compared 

to the conventional one. Hiltunen [16] examined the temporal variation in the eco-efficiency 

performance of the agricultural sector of Kymenlaakso, an industrial region in Southern Finland, 

from 1995 to 2000. Eco-efficiency is defined as the ratio of the sectoral gross value added divided 

by eight alternative environmental indicators, expressing energy use, land use, greenhouse gas 

(GHG) emissions, acidifying substances, pesticides and fertilizers consumption and tropospheric 

ozone precursors. The results showed that the overall eco-efficiency of the sector has been 

improving between 1995 and 2000, but it is mentioned that this is due to the higher added value. 

The results of this study reflect the volatile nature of the agricultural sector and the fact that its 



performance is affected by the climate conditions. Gómez-Limón et al. [19] use Data 

Environmental Analysis (DEA) in order to assess the eco-efficiency of olive farming in the rural 

areas of Andalusia, Spain, based on the answers from 292 local farmers, collected through a 

questionnaire. The economic performance is assessed using the net income per hectare, while six 

indicators have been used to measure the environmental pressures; erosion, biodiversity, pesticide 

risk, water use, nitrogen ratio and energy ratio. The objective of the study is to maximize the ratio 

between the farm production and a weighted sum of inputs, both variable and fixed. The results of 

the analysis showed that farmers tend to use eco-inefficient management practices, mainly due to 

widespread technical inefficiency. Furthermore, the traditional plain growing system proved to be 

the most eco-efficient production system. Finally, is was verified that soil and climatic conditions 

strongly influence the eco-efficiency of the system. 

 

The methodological framework, presented in the current paper, examines an agricultural system 

from a different point of view and follows a systemic approach and its objective is to assess 

alternative technological interventions, which may improve the eco-efficiency of the overall system. 

The system examined is a meso-level water use system and combines the water supply chain with 

the corresponding water use chain. It incorporates a specific water use with all the processes needed 

to render the water suitable (both qualitatively and quantitatively) for this use, and the treatment and 

discharge of the generated effluents to the environment. It considers the whole water cycle of the 

analysed system, by monitoring the water from its source, to the final user and back to the 

environment.  

 

2. METHODOLOGY 

 

Eco-efficiency assessment is a quantitative tool which enables the study of the environmental 

impacts of a product or service system along with its added value. According to the ISO for the eco-

efficiency assessment of product systems [20], the environmental impacts should be assessed using 

a Life Cycle Assessment (LCA) approach while the value of the product or service system may be 

chosen to reflect its resource, production, delivery or use efficiency, or a combination of these. 

Consequently, an eco-efficiency assessment shares with LCA many important principles and 

approaches such as life cycle perspective, functional unit, life-cycle inventory and life cycle impact 

assessment and the overall procedure generally comprises of five steps [21]: 

 

i. Goal and scope definition; 

ii. Environmental assessment; 

iii. Value assessment; 

iv. Quantification of eco-efficiency; and 

v. Interpretation. 

 

2.1 Goal and Scope Definition 

 

The objective of the developed methodology is to assess the eco-efficiency of a meso-level water-

use system. Before selecting and calculating the eco-efficiency indicators, the boundaries and the 

characteristics of the studied system, as well as the functional unit, have to be identified. A generic 

meso-level water use system can be represented as a network of unit processes. Each process 

represents an activity, implementing one or more technologies, where generic materials (water, raw 

materials, energy and other supplementary resources) are transformed into products, while releasing 

emissions to the environment (air, land, water) or into the system water flow. 

 

The boundaries of the studied system encompass all the processes related to the water supply and 

the water use chains and can be grouped into four generic stages, as depicted in Figure 1. The 

functional unit sets the scale for the comparison of two or more products or services delivered to the 



consumers [8, 22]. The main purpose of a functional unit is to provide a reference to which results 

are normalized and compared. Possible functional units for a meso-level water use system could be: 

(a) one unit of product/service delivered or (b) one unit of water used. 

 

2.2 Environmental Assessment 

 

The assessment of the environmental performance follows a life-cycle oriented approach using 

midpoint impact categories, which make it possible to characterize different environmental 

problems, such as climate change, ozone depletion, photochemical ozone formation, acidification, 

eutrophication and resource depletion [23]. Towards that end, an inventory of flows entering and 

leaving every process in the system is created and, based on that, the significance of potential 

environmental impacts is evaluated. The results of the inventory, expressed as elementary flows, are 

assigned to impact categories according to the contribution of the resource/emission to different 

environmental problems, using standard characterization factors. The environmental impact for 

impact category c is expressed as a score (ESc) in a unit common to all contributions within the 

category. It can be easily calculated using the flows from the inventory analysis and the 

characterization factors, as follows: 

 

𝐸𝑆𝑐 = ∑ 𝑐𝑓𝑟,𝑐 × 𝑓𝑟𝑟 + ∑ 𝑐𝑓𝑒,𝑐 × 𝑓𝑒𝑒  (Eq. 1) 

 

where: cfr,c is the characterization factor of resource r for the impact category c, cfe,c is the 

characterization factor of emission e for the impact category c (both retrieved from LCA databases), 

and fr, fe the elementary flows of resource r and emission e respectively. 

 

 
 

Figure 1. Generic meso-level water system 

 

Most LCA studies and databases neglect the impacts from the use of freshwater [24] and there is no 

standardized environmental midpoint indicator for the freshwater resource depletion [22]. However, 

since water consumption is a main component of the studied system, freshwater depletion cannot be 

neglected. The methodology proposed by Mila i Canals [25] and suggested by JRC [22] is used, and 

it is based on the Freshwater Ecosystem Impact (FEI) indicator, defined as: 

 

𝐹𝐸𝐼 = 𝑓𝑤,𝑎𝑏𝑠 × 𝑊𝑇𝐴 (Eq. 2) 

 



where fw,abs is the flow of freshwater abstracted and WTA is the water withdrawal to availability 

ratio. 

 

2.3 Value Assessment 

 

The economic performance of the system is measured by using the Total Value Added (TVA) to the 

product due to water use, expressed in monetary units per period and per functional unit. It is 

estimated as: 

 

𝑇𝑉𝐴 = 𝐸𝑉𝑈 + 𝑉𝑃𝐵𝑃 − 𝑇𝐹𝐶𝑊𝑆 − 𝑇𝐹𝐶𝑊𝑊 − 𝐹𝐶 (Eq. 3) 

 

where EVU is the total economic value from water use, VPBP is the income generated from any by-

products of the system, TFCWS is the total financial cost related to water supply provision for 

rendering the water suitable for the specific use, TFCWW is the total financial cost related to 

wastewater treatment and FC is the annual equivalent future cash flow generated by the 

introduction of new technologies in the system. The total economic value from water use refers to 

the total benefits from direct use of water. It can be estimated by using the residual value approach, 

by subtracting the expenses for all the non-water inputs as well as the costs related to emissions in 

the water use stage from the total value of the products. 

 

2.4 Eco-efficiency Indicators 

 

The Eco-Efficiency Indicators (EEI) of the meso-level water use systems are defined as the ratio of 

the economic performance indicators (total value added, TVA) to the environmental performance 

indicator of the system (environmental score, ES). Numerous eco-efficiency indicators can be 

defined, one for each environmental impact category c: 

 

𝐸𝐸𝐼𝐶 =
𝑇𝑉𝐴

𝐸𝑆𝐶
    (Eq. 4) 

 

Eco-efficiency indicators do not depend on the functional unit considered and an increase in the 

value of the indicator indicates an improvement of the overall system’s eco-efficiency. An 

appropriate set of eco-efficiency indicators should be selected for each system, tailored to the goal 

and scope of the analysis. 

 

3. THE CASE OF FRESH FORM TOMATO CROP IN PHTHIOTIDA 

 

The proposed approach is applied to the agricultural sector, and more specifically to the fresh form 

tomato crop production in Phthiotida. The objective is to identify the environmental weaknesses of 

the examined system and to proposed alternative actions which will improve its overall eco-

efficiency. Phthiotida is a regional unit of Greece located in the administrative region of Central 

Greece. Geographically, it is surrounded by several mountain ranges and is part of the valley of 

river Spercheios. Due to its morphology, the regional climate varies between the northern and the 

southern part. The arable land is characterized by lowland continental conditions (hot and dry 

summer-mild and wet winter). 

 

Tomato is one of the most widely grown vegetables in the world. It is a seasonal vegetable, 

cultivated in the summer, which requires large volumes of water and systematic irrigation at regular 

intervals, especially after the fruit set. Although tomato can be grown in any type of soil and is 

tolerant to high temperatures (up to 38oC), its sensitivity in parasites and potential diseases suggests 

the systematic implementation of pesticides and fertilizers. In Greece, 11.9% of the annual fresh 

form tomato crop is produced in Central Greece and more specifically 5% is produced in Phthiotida 



[26]. The term “fresh form” implies that the product is consumed, without any further processing, 

after the fruit has set. 

 

3.1 System boundaries & Functional unit 

 

The total surface area dedicated to open-grown fresh form tomato cultivation in Phthiotida is 660 

hectares, with an expected annual production of around 20000 tons of tomato [26]. The studied 

system consists of a smaller farm with an overall area of 2 hectares. The schematic representation of 

the system is illustrated in Figure 2 and consists of two different chains, the water supply chain and 

the tomato production chain, which are intersected at the irrigation process. Each process is 

represented by a node, the black solid arrows represent the water supply chain, the black dotted 

arrows the tomato production chain, the gray solid arrows all the incoming supplementary resources 

(i.e. diesel, fertilizers and pesticides) and the gray dotted arrows all the outgoing pollutants. The 

functional unit depends on the reference flow selected each time. In this study, two different cases 

are investigated: (i) when the unit of product delivered is the flow of interest, the functional unit is 

defined as 1 ton of tomato and (ii) when the quantity of interest is the water used for the production 

purposes then the functional unit is 1 m3 of water used in the production of each crop. 

 

 
 

Figure 2. Stages of water value chain and tomato crop 

 

3.2 Environmental assessment 

 

The average tomato yield is estimated to be 37.5 tons per hectare and the annual crop water 

requirements are assumed to be 7133 m3 per hectare [27, 28]. For the farm irrigation, a drip 

irrigation system is used, with average field efficiency of 80%. It is also assumed that each ton of 

tomato requires 24 kg of fertilizer 20-20-20 and 0.4 kg of pesticide [27]. Water is abstracted using 

diesel pumps with a specific consumption of 0.035 L per m3 of water. The environmental 

performance of the system is assessed through eight environmental impact categories, relevant to 



the agricultural sector. The characterization factors included in the CML-IA database are used for 

the calculation of the environmental impacts [23]. The results of the environmental assessment are 

presented in Table 1. 

3.3 Value assessment 

 

The total value added to the tomato from the use of water is calculated based on the unit costs of 

supplementary resources, which were provided by the local suppliers. The average price of fertilizer 

20-20-20 is 23.4 €/kg while the two different pesticides used cost 49.9 €/kg (Dual Gold 96) and 

14.4 €/kg (Stomp 330). Furthermore, the tomato seed costs 0.32 €/g and the average price of diesel 

for the regional unit of Phthiotida in 2013 is 1.95 €/lt. In addition, the fixed and the variable water 

supply cost in Phthiotida is 14.8 €/yr and 1 €/m3, respectively. Finally, according to the Greek 

Ministry of Development and Competitiveness, the average unit price of fresh form tomato was 

1.87 €/kg in 2011. The total value added to the product from the water use is 1.25 €/kg of tomato or 

5.82 €/m3 of water used. 

 

3.4 Eco-efficiency assessment 

 

Based on the environmental and value assessment, the eight relevant eco-efficiency indicators are 

calculated and presented in Table 1. It is apparent that the three major environmental impacts of the 

studied system (highlighted by the indicators with the highest environmental score and the lowest 

eco-efficiency value) are: (a) climate change, due to diesel consumption for water abstraction and 

soil preparation, (b) freshwater depletion, (c) freshwater ecotoxicity and (d) eutrophication due to 

the use of pesticides and fertilizers repsectively. Comparing to two other agricultural regions that 

were examined using the same approach, the Monte Novo irrigation perimeter in Portugal and the 

Sinistra Ofanto irrigation scheme in Italy, the main environmental impacts identified are identical; 

climate change, eutrophication and freshwater resource depletion [29]. The differentiations in the 

indicators’ values can be explained by the different crop patterns (with varying water requirements), 

the fuel mix used in each region and the different systems boundaries for the analysis. 

 

Table 1. Environmental and eco-efficiency indicators for baseline scenario 

 

Midpoint Impact Category Unit 
ESC 

(in Unit/m3) 

ESC 

(in Unit/tn tomato) 

EEIC 

(in €/Unit) 

Climate Change kgCO2eq 0.225 48.21 25.8 

Eutrophication kgPO4
3

-,eq 0.021 4.52 275 

Acidification kgSO2-
,eq < 0.001 0.07 18928 

Photochemical Oxidation kgC2H4,eq < 0.001 0.012 99760 

Human Toxicity kg1,4DCB,eq 0.002 0.37 3334 

Freshwater Ecotoxicity kg1,4DCB,eq 0.178 38 32.8 

Terrestrial Ecotoxicity kg1,4DCB,eq < 0.001 0.011 115407 

Freshwater Depletion m3 0.188 40.12 31.1 

 

Thus, the upgrading of the system through innovative technologies should aim at improving these 

four key indicators. Towards that end, three alternative options will be examined: 

 More efficient irrigation, by installing a sub-surface drip irrigation system 

 Substitution of fossil fuels with renewable energy sources, by replacing diesel pumps with 

solar ones 

 Promotion of agro-ecological practices and soil management techniques, by using organic 

fertilizers instead of conventional 

 



4. VALUE CHAIN UPGRADE 

 

4.1 Installation of a sub-surface drip irrigation system 

 

A common practice towards improving water use efficiency of an irrigation scheme is to replace 

gravity-fed irrigation systems, such as border check and furrow, with more efficient pressurized 

systems [30, 31], as they may offer a significant reduction in water use at the field scale. Drip 

irrigation systems (either surface or sub-surface) use point sources in order to achieve slow and 

precise application of water and nutrients directly to the root zones in a controlled flow that satisfies 

the maximum crop irrigation requirements.  

 

More specifically, sub-surface drip irrigation (SDI) systems supply water to crops through buried 

plastic drip lines with emission points. Water is delivered underground at the depth where most of 

the rooting system reside and thus, minimization of wetting soil surface, weed generation and 

surface evaporation can be achieved. Furthermore, in case of an SDI system the tubes can be left in 

place for multiple seasons. According to plot and field applications conducted by the Water 

Management Research Laboratory, and reviewed by Ayars et al. [32], the application of SDI, 

resulted in significant yield and water use efficiency in tomato, cotton, sweet corn, alfalfa, and 

cantaloupe. Furthermore, Phene et al. [33] presented significant yield increases in tomatoes 

cultivation by using high frequency SDI and precise fertility management. The major disadvantages 

of such systems are the higher investment and management costs than conventional irrigation 

systems [34]. It is assumed that the investment cost of the application of an SDI system in the 

examined irrigated field is 5000 €/ha, its annual operation and maintenance cost is equal to 12% of 

the investment cost, its lifetime is 15 years. After its implementation, the average field efficiency 

increases up to 90% and a 20% yield increase can be achieved. 

 

4.2 Substitution of fossil fuels 

 

The use of renewable energy is attractive for water pumping applications, especially in rural and 

remote areas or isolated systems, not connected to the electricity grid. More specifically, the use of 

the solar radiation as a power source for irrigation is highly recommended for rural farms without 

existing power lines as it is available at the site of application without the employment of a 

distribution system. Solar photovoltaic (PV) water pumping systems can be the most cost-effective 

pumping solution when they are designed and sized properly in order to take advantage of the solar 

energy as efficiently as possible [35]. PV pumps are more economical, mainly due to the lower 

operation and maintenance costs compared to a diesel pump, and have less environmental impact 

than pumps powered by fossil fuels [36]. Furthermore, they can be easily installed at the site of use, 

without needing long pipelines, and they are considered to be highly reliable and durable [37].  
 

Plant water demand and the quantity of water pumped by a photovoltaic-powered water pumping 

system are both directly correlated to daily solar insolation [35]. The average annual sun radiation 

in Greece is estimated at 1800 kWh/m2 [38] while for the regional unit of Phthiotida, the monthly 

average solar radiation is 140 kWh/m2 [39]. Assuming an average overall efficiency of the PV panel 

of 10%, the required installed PV capacity for satisfying the daily irrigation requirements of 1 

hectare of tomato is estimated at 9 kW. The installation cost of such system is estimated to be 

around 2000 € [40] and the annual operation and maintenance costs are 200 €/yr. 

 

4.3 Application of organic fertilizers 

 

The shift from traditional agricultural to modern organic production methods will have significant 

social, economic and environmental benefits. More specifically, an organic agricultural system is 

characterized by reduced environmental impact, improved products quality as well as improved 



process effectiveness through enhancing water use efficiency and reducing the use of synthetic 

fertilizers, pesticides and herbicides [41]. Organic farming will thus contribute to the conservation 

of natural resources, the maintenance of biodiversity and the preservation of the ecosystem. One of 

the common practices towards organic farming is the application of organic fertilizers or 

compounds to the crops, aiming at re-allocating nutrients while reducing the impacts, due to 

chemical substances, on human and freshwater toxicity. In 2001, OECD define organic fertilizers as 

fertilizers that are derived from animal products and plant residues containing sufficient nitrogen. In 

2014, ECOFI proposed the definition of an organic fertilizer as a fertilizer whose main function is 

to provide nutrients under organic forms which consist of organic materials of plant and/or animal 

origin. However, the use of organic fertilizers may include higher labour, increased energy demand, 

and difficulty in optimizing N availability in soils with organic fertilization as well as in matching 

plant demand [42]. Moreover, when organic fertilizers have to be obtained off-farm, undesirable 

transport and distribution costs may incur. 

 

In the studied system, the replacement of the chemical fertilizer 20-20-20 with compost produced 

from aerobic biological degradation of organic residues is proposed and assessed. In the Greek 

market, the available compost contains 1-2% N, 0.5-1% P and 0.5-1% K, including significant 

quantities of minerals. The total amount of organic fertilizer required for sufficient fertilization of 

tomato crops is estimated to be 15-30 tn/ha and the corresponding supply cost is approximately 60-

130 €/tn. The application of organic fertilizers will have a negative impact on the agricultural 

production, reducing the crop yield by 20%. Based on market research, in 2011, the unit price of 

organic tomato varied between 2.5 €/kg to 3.5 €/kg, an increase of up to 40% compared to tomato 

crops from conventional farming. 

 

4.4 Technology Assessment 

 

The total value added to the tomato due to water use increases in all three cases (8.36 €/m3 in the 

sub-surface drip irrigation scenario, 5.86 €/m3 in the solar pump scenario, 10.5 €/m3 in the organic 

farming scenario compared to 5.82 €/m3 in the baseline scenario), while the net annual economic 

output of the farmers remains positive. Furthermore, Table 2 presents the absolute values of the 

eco-efficiency indicators for all three technology scenarios while Figure 3 illustrates the relative 

change compared to the baseline scenario. All three scenarios influence positively the overall eco-

efficiency of the system, by improving the majority of the eight eco-efficiency indicators in all three 

cases (Table 2). 

 

Table 2. Comparison of the eco-efficiency indicators in the four scenarios 

 

Midpoint Impact Category Unit 
Baseline 

Scenario 

Sub Surface 

Drip Irrigation 

Solar 

Pump 

Organic 

Farming 

Climate change €/kgCO2eq 25.8 35.3 66.6 46.6 

Eutrophication €/kgPO4
3
-,eq 275 351 277 1068 

Acidification €/kgSO2-
,eq 18928 25753 48741 34350 

Photochemical oxidation €/kgC2H4,eq 99760 135465 256426 178388 

Human toxicity €/kg1,4DCB,eq 3334 3894 4476 5393 

Freshwater Ecotoxicity €/kg1,4DCB,eq 32.8 34.8 33.0 49.3 

Terrestrial Ecotoxicity €/kg1,4DCB,eq 115407 122635 116075 173456 

Freshwater Depletion €/m3 31.1 44.6 31.2 56.0 

 

Among them, sub-surface drip irrigation system has the worst performance since it improves only 

half of the indicators, with the most positive impact being on the freshwater depletion, while the 



other four indicators remain near the baseline values. This is mainly due to its high investment cost, 

which counterbalances the positive impact on the environmental performance of the system. The 

use of solar pumps significantly improves, as expected, all the indicators which are closely related 

to the fossil fuels consumption; mainly the climate change and photochemical oxidation indicators 

and secondarily the human toxicity and acidification indicators. Finally, the promotion of organic 

fertilizers presents the overall best performance with a balanced positive impact for all the eco-

efficiency indicators, and highlighting a significant improvement regarding eutrophication indicator 

due to lack of toxic substances. Also, compared to the other two scenarios, it seems to be more eco-

efficient in the categories of freshwater depletion and ecotoxicity. These same conclusions were 

also drawn from the other two Case Studies [29], where it was pointed out that pollution prevention 

scenarios can be more easily implemented than water saving technologies, since farmers have a 

positive net economic output leading to an increased eco-efficiency of the system. 

 

 
 

Figure 3. Eco-efficiency assessment for the three technology scenarios 

 

5. CONCLUSIONS 

 

The paper presents a methodological framework for the assessment of eco-efficiency in water use 

systems as a measure of progress towards a more sustainable economy. This approach was applied 

to the water use system of tomato production in Phthiotida. The baseline scenario is compared to 

the implementation of three alternative technology scenarios (sub-surface drip irrigation, 

installation of solar pumps, use of organic fertilizers) in order to improve the eco-efficiency of the 

system. The analysis has showed that there is a lot of room for improvement, concerning the main 

environmental problems of the area; namely the climate change, the freshwater resource depletion 

and the eutrophication effect, due to water run-off. While each alternative affects in a different way 

and level the eco-efficiency of the system, all appear to improve most of the indicators. Thus, for a 

more integrated approach, regarding the eco-efficiency performance, a combined application of 

these three scenarios may be proposed. Towards that end, a combined scenario has been examined, 

by simply assuming that all three options were implemented in 50% of the area for tomato crops in 

Phthiotida. In that case, a minimum reduction of greenhouse gas emissions by 10% and of 

freshwater abstracted by 2% could be achieved, while at the same time the total value added would 

be increased by 15%. 



 

Moreover, the analysis suggests that the proposed methodological framework gives reliable results 

and can be expanded and applied to other water use systems. However, it should be noted that it is a 

methodology that does not provide the optimal solution but compares alternative system 

configurations, highlighting the strong and weak points of each one. Furthermore, since all the 

figures used, and especially the economic ones, are characterized by temporal variation and 

increased level of uncertainty, the analysis could be complemented by a sensitivity analysis which 

will allow to quantify the uncertainty and identify the most critical parameters. Finally, the 

application of the framework to other alternative water use systems is encouraged since this will 

help reveal its weaknesses as well as more areas for further research. 
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