164 research outputs found
Role of biomarkers in evaluation, treatment and clinical studies of pulmonary arterial hypertension
Pulmonary arterial hypertension is a complex disease resulting from the interplay of myriad biological and environmental processes that lead to remodeling of the pulmonary vasculature with consequent pulmonary hypertension. Despite currently available therapies, there remains significant morbidity and mortality in this disease. There is great interest in identifying and applying biomarkers to help diagnose patients with pulmonary arterial hypertension, inform prognosis, guide therapy, and serve as surrogate endpoints. An extensive literature on potential biomarker candidates is available, but barriers to the implementation of biomarkers for clinical use in pulmonary arterial hypertension are substantial. Various omic strategies have been undertaken to identify key pathways regulated in pulmonary arterial hypertension that could serve as biomarkers including genomic, transcriptomic, proteomic, and metabolomic approaches. Other biologically relevant components such as circulating cells, microRNAs, exosomes, and cell-free DNA have recently been gaining attention. Because of the size of the datasets generated by these omic approaches and their complexity, artificial intelligence methods are being increasingly applied to decipher their meaning. There is growing interest in imaging the lung with various modalities to understand and visualize processes in the lung that lead to pulmonary vascular remodeling including high resolution computed tomography, Xenon magnetic resonance imaging, and positron emission tomography. Such imaging modalities have the potential to demonstrate disease modification resulting from therapeutic interventions. Because right ventricular function is a major determinant of prognosis, imaging of the right ventricle with echocardiography or cardiac magnetic resonance imaging plays an important role in the evaluation of patients and may also be useful in clinical studies of pulmonary arterial hypertension
Square to stripe transition and superlattice patterns in vertically oscillated granular layers
We investigated the physical mechanism for the pattern transition from square
lattice to stripes, which appears in vertically oscillating granular layers. We
present a continuum model to show that the transition depends on the
competition between inertial force and local saturation of transport. By
introducing multiple free-flight times, this model further enables us to
analyze the formation of superlattices as well as hexagonal lattice
Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing
A continuous wave optical parametric oscillator, generating up to 300 mW idler output in the 3–4 μm wavelength region, and pumped by a fiber-amplified DBR diode laser is used for trace gas detection by means of quartz-enhanced photoacoustic spectroscopy (QEPAS). Mode-hop-free tuning of the OPO output over 5.2 cm-1 and continuous spectral coverage exceeding 16.5 cm-1 were achieved via electronic pump source tuning alone. Online monitoring of the idler wavelength, with feedback to the DBR diode laser, provided an automated closed-loop control allowing arbitrary idler wavelength selection within the pump tuning range and locking of the idler wavelength with a stability of 1.7×10-3 cm-1 over at least 30 min.\ud
\ud
Using this approach, we locked the idler wavelength at an ethane absorption peak and obtained QEPAS data to verify the linear response of the QEPAS signal at different ethane concentrations (100 ppbv-20 ppmv) and different power levels. The detection limit for ethane was determined to be 13 ppbv (20 s averaging), corresponding to a normalized noise equivalent absorption coefficient of 4.4×10-7 cm-1 W/Hz1/2
A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation
An efficient calibration method has been developed for broad-bandwidth cavity enhanced absorption spectroscopy. The calibration is performed using phase shift cavity ring-down spectroscopy, which is conveniently implemented through use of an acousto-optic tunable filter (AOTF). The AOTF permits a narrowband portion of the SC spectrum to be scanned over the full high-reflectivity bandwidth of the cavity mirrors. After calibration the AOTF is switched off and broad-bandwidth CEAS can be performed with the same light source without any loss of alignment to the set-up. We demonstrate the merits of the method by probing transitions of oxygen molecules O-2 and collisional pairs of oxygen molecules (O-2)(2) in the visible spectral range
Pre-diagnostic serum concentrations of organochlorines and risk of acute myeloid leukemia: A nested case-control study in the Norwegian Janus Serum Bank Cohort
Background: Epidemiologic studies suggest an increased risk of leukemia among individuals occupationally exposed to some organochlorine (OC) compounds. Associations between serum OC pesticide and polychlorinated biphenyl (PCB) levels and risk of acute myeloid leukemia (AML), the most common subtype of acute leukemia in adult populations, have not been evaluated prospectively in the general population. Objective: We evaluated the risk of AML in relation to pre-diagnostic serum levels of OC pesticides and PCBs in a case-control study nested within the Janus Serum Bank Cohort. Methods: Janus is a large population-based cohort containing biologic samples collected beginning in the early 1970s from ~318,000 individuals in Norway. Serum levels of 11 OC pesticides or their metabolites and 34 PCB congeners were measured in 56 AML cases and 288 controls. Conditional logistic regression was conducted to evaluate associations between lipid-adjusted serum OC levels and risk of AML. Results: Higher serum levels of total chlordane/heptachlor metabolites were associated with AML risk (3rd vs. 1st tertile odds ratio (OR) = 2.26, 95% confidence interval (CI) = 0.91–5.63; ptrend = 0.11). Significant exposure-response associations were observed for levels of heptachlor epoxide (3rd vs. 1st tertile OR = 2.85, 95% CI = 1.05–7.73; ptrend = 0.02) and dieldrin (3rd vs. 1st tertile OR = 2.71, 95% CI = 1.07–6.83; ptrend = 0.03). No significant exposure-response associations with AML risk were observed for total DDT or individual isomers and derivatives. Higher serum levels of p,p′-DDT showed a non-significant increase in risk, but the exposure-response became attenuated when co-adjusting for heptachlor epoxide or dieldrin levels. Serum PCB levels were not significantly associated with AML risk. Conclusions: Our data suggest that higher serum levels of dieldrin and metabolites derived from chlordane/heptachlor are associated with risk of AML in the general Norwegian population, based on samples collected on average ~17 years before diagnosis. Further research in populations with historically high or recent exposure to DDT is warranted to assess the association with AML risk with body burden of specific DDT isomers and derivatives
The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter
The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described
Cavity-enhanced direct frequency comb spectroscopy
Cavity-enhanced direct frequency comb spectroscopy combines broad spectral
bandwidth, high spectral resolution, precise frequency calibration, and
ultrahigh detection sensitivity, all in one experimental platform based on an
optical frequency comb interacting with a high-finesse optical cavity. Precise
control of the optical frequency comb allows highly efficient, coherent
coupling of individual comb components with corresponding resonant modes of the
high-finesse cavity. The long cavity lifetime dramatically enhances the
effective interaction between the light field and intracavity matter,
increasing the sensitivity for measurement of optical losses by a factor that
is on the order of the cavity finesse. The use of low-dispersion mirrors
permits almost the entire spectral bandwidth of the frequency comb to be
employed for detection, covering a range of ~10% of the actual optical
frequency. The light transmitted from the cavity is spectrally resolved to
provide a multitude of detection channels with spectral resolutions ranging
from a several gigahertz to hundreds of kilohertz. In this review we will
discuss the principle of cavity-enhanced direct frequency comb spectroscopy and
the various implementations of such systems. In particular, we discuss several
types of UV, optical, and IR frequency comb sources and optical cavity designs
that can be used for specific spectroscopic applications. We present several
cavity-comb coupling methods to take advantage of the broad spectral bandwidth
and narrow spectral components of a frequency comb. Finally, we present a
series of experimental measurements on trace gas detections, human breath
analysis, and characterization of cold molecular beams.Comment: 36 pages, 27 figure
The Theory of Brown Dwarfs and Extrasolar Giant Planets
Straddling the traditional realms of the planets and the stars, objects below
the edge of the main sequence have such unique properties, and are being
discovered in such quantities, that one can rightly claim that a new field at
the interface of planetary science and and astronomy is being born. In this
review, we explore the essential elements of the theory of brown dwarfs and
giant planets, as well as of the new spectroscopic classes L and T. To this
end, we describe their evolution, spectra, atmospheric compositions, chemistry,
physics, and nuclear phases and explain the basic systematics of
substellar-mass objects across three orders of magnitude in both mass and age
and a factor of 30 in effective temperature. Moreover, we discuss the
distinctive features of those extrasolar giant planets that are irradiated by a
central primary, in particular their reflection spectra, albedos, and transits.
Aspects of the latest theory of Jupiter and Saturn are also presented.
Throughout, we highlight the effects of condensates, clouds, molecular
abundances, and molecular/atomic opacities in brown dwarf and giant planet
atmospheres and summarize the resulting spectral diagnostics. Where possible,
the theory is put in its current observational context.Comment: 67 pages (including 36 figures), RMP RevTeX LaTeX, accepted for
publication in the Reviews of Modern Physics. 30 figures are color. Most of
the figures are in GIF format to reduce the overall size. The full version
with figures can also be found at:
http://jupiter.as.arizona.edu/~burrows/papers/rm
Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome
To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP
microarray intensity data of 38,303 women from cancer genome-wide association studies
(20,878 cases and 17,425 controls) and detected 124 mosaic X events42Mb in 97 (0.25%)
women. Here we show rates for X-chromosome mosaicism are four times higher than mean
autosomal rates; X mosaic events more often include the entire chromosome and participants
with X events more likely harbour autosomal mosaic events. X mosaicism frequency
increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and
autosomes. Methylation array analyses of 33 women with X mosaicism indicate events
preferentially involve the inactive X chromosome. Our results provide further evidence that
the sex chromosomes undergo mosaic events more frequently than autosomes, which could
have implications for understanding the underlying mechanisms of mosaic events and their
possible contribution to risk for chronic diseases
- …