107 research outputs found

    Pediatric inflammatory bowel disease clinical innovations meeting of the Crohn's and colitis foundation: Charting the future of pediatric IBD

    Get PDF
    The Crohn's & Colitis Foundation has facilitated transformational research in pediatric inflammatory bowel disease (IBD), through the RISK and PROTECT studies, that has laid the groundwork for a comprehensive understanding of molecular mechanisms of disease and predictors of therapeutic response in children. Despite these advances, children have lacked timely and informed access to the latest therapeutic advancements in IBD. The Crohn's & Colitis Foundation convened a Pediatric Resource Organization for Kids with Inflammatory Intestinal Diseases (PRO-KIIDS) Clinical Innovations Meeting at the inaugural Crohn's and Colitis Congress in January 2018 to devise how to advance the care of children with IBD. The working group selected 2 priorities: (1) accelerating therapies to children with IBD and (2) stimulating investigator-initiated research while fostering sustainable collaboration; and proposed 2 actions: (a) the convening of a task force to specifically address how to accelerate pharmacotherapies to children with IBD and (b) the funding of a multicenter clinical and translational research study that incorporates the building of critical research infrastructure

    Measurement of CP asymmetry in Cabibbo suppressed D0 decays

    Full text link
    We measure the CP-violating asymmetries in decays to the D0 -> K+K- and D0 -> pi+pi- CP eigenstates using 540 fb^{-1} of data collected with the Belle detector at or near the Upsilon(4S) resonance. Cabibbo-favored D0 -> K-pi+ decays are used to correct for systematic detector effects. The results, A_{CP}^{KK} = (-0.43 +- 0.30 +- 0.11)% and A_{CP}^{pipi} = (+0.43 +- 0.52 +- 0.12)%, are consistent with no CP violation.Comment: Submitted to Phys. Lett.

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Search for charged Higgs bosons in top quark decays

    Full text link
    We present a search for charged Higgs bosons in top quark decays. We analyze the \eplus, \muplus, eeee, eμe\mu, μμ\mu\mu, \etau and \mutau final states from top quark pair production events, using data from about 1fb1{\text{fb}}^{-1} of integrated luminosity recorded by the \dzero experiment at the Fermilab Tevatron Collider. We consider different scenarios of possible charged Higgs boson decays, one where the charged Higgs boson decays purely hadronically into a charm and a strange quark, another where it decays into a τ\tau lepton and a τ\tau neutrino and a third one where both decays appear. We extract limits on the branching ratio B(tH+b)B(t\to H^+ b) for all these models. We use two methods, one where the ttˉt\bar{t} production cross section is fixed, and one where the cross section is fitted simultaneously with B(tH+b)B(t\to H^+b). Based on the extracted limits, we exclude regions in the charged Higgs boson mass and tanβ\tan \beta parameter space for different scenarios of the minimal supersymmetric standard model.Comment: 10 pages, 8 figures, submitted to PL

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes
    corecore