851 research outputs found

    Proteomic analysis of the rat ovary following chronic low-dose exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

    Get PDF
    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitously distributed endocrine-disrupting chemical and reproductive toxicant. In order to elucidate low-dose TCDD-mediated effects on reproductive or endocrine functions, female Sprague-Dawley rats were orally administered various concentrations (20, 50, or 125 ng/kg once weekly) TCDD for 29 wk. A proteomic analysis of the ovaries by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry showed distinct changes in the levels of several proteins that are relevant markers of TCDD toxicity. Serum estradiol (E2) levels of TCDD-treated animals were markedly lower than control. There were no significant differences in bone mineral density (BMD) of femurs. The body weight of the 125-ng/kg TCDD group was significantly decreased relative to control and there was also a significant reduction in absolute and relative ovarian weights. Expressions of selenium binding protein 2, glutathione S-transferase mu type 3, Lrpap1 protein, NADPH, and peptidylprolyl isomerase D were upregulated, while prohibitin and N-ethylmaleimide-sensitive factor expression levels were downregulated. Data provide further insight into the mechanisms by which TCDD disrupts ovarian function by indicating which differential protein expressions following low-dose TCDD exposure

    Gauge fields, ripples and wrinkles in graphene layers

    Full text link
    We analyze elastic deformations of graphene sheets which lead to effective gauge fields acting on the charge carriers. Corrugations in the substrate induce stresses, which, in turn, can give rise to mechanical instabilities and the formation of wrinkles. Similar effects may take place in suspended graphene samples under tension.Comment: contribution to the special issue of Solid State Communications on graphen

    Growth of High Quality CdZnTe Films by Close-Spaced Sublimation Method

    Get PDF
    AbstractThe effects of substrate temperature, source temperature and separation distance between the source and substrate on the growth rate of CdZnTe (CZT) films by Closed Space Sublimation (CSS) were systematically investigated. A maximum deposition rate of above 5μm/min was achieved with a source temperature of 650°C. The CZT films were heat treated by CdCl2 vapour in CSS system. The CdCl2 treatment on the structural and optical properties of CZT films was studied

    Transport spectroscopy in a time-modulated open quantum dot

    Full text link
    We have investigated the time-modulated coherent quantum transport phenomena in a ballistic open quantum dot. The conductance GG and the electron dwell time in the dots are calculated by a time-dependent mode-matching method. Under high-frequency modulation, the traversing electrons are found to exhibit three types of resonant scatterings. They are intersideband scatterings: into quasibound states in the dots, into true bound states in the dots, and into quasibound states just beneath the subband threshold in the leads. Dip structures or fano structures in GG are their signatures. Our results show structures due to 2ω\hbar\omega intersideband processes. At the above scattering resonances, we have estimated, according to our dwell time calculation, the number of round-trip scatterings that the traversing electrons undertake between the two dot openings.Comment: 8 pages, 5 figure

    Growth of High Quality ZnMgO Films on Diamond Substrates

    Get PDF
    AbstractZnMgO films were prepared at room temperature on freestanding diamond (FSD) substrates by co-sputtering. The Mg content was controlled by varying RF sputtering power of MgO and the effects of Mg contents on the properties of ZnMgO films were investigated. The results showed that the (0002) peak of ZnMgO shifted from 34.5° to 35.6° with the increasing sputtering power of MgO target. The UV-visible and PL spetra of ZnMgO films revealed that the bandgap of ZnMgO was approximately linear related to the sputtering power of MgO target

    Low-intensity repetitive magnetic stimulation lowers action potential threshold and increases spike firing in layer 5 pyramidal neurons in vitro

    Get PDF
    Repetitive transcranial magnetic stimulation (rTMS) has become a popular method of modulating neural plasticity in humans. Clinically, rTMS is delivered at high intensities to modulate neuronal excitability. While the high-intensity magnetic field can be targeted to stimulate specific cortical regions, areas adjacent to the targeted area receive stimulation at a lower intensity and may contribute to the overall plasticity induced by rTMS. We have previously shown that low-intensity rTMS induces molecular and structural plasticity in vivo, but the effects on membrane properties and neural excitability have not been investigated. Here we investigated the acute effect of low-intensity repetitive magnetic stimulation (LI-rMS) on neuronal excitability and potential changes on the passive and active electrophysiological properties of layer 5 pyramidal neurons in vitro. Whole-cell current clamp recordings were made at baseline prior to subthreshold LI-rMS (600 pulses of iTBS, n = 9 cells from 7 animals) or sham (n = 10 cells from 9 animals), immediately after stimulation, as well as 10 and 20 min post-stimulation. Our results show that LI-rMS does not alter passive membrane properties (resting membrane potential and input resistance) but hyperpolarises action potential threshold and increases evoked spike-firing frequency. Increases in spike firing frequency were present throughout the 20 min post-stimulation whereas action potential (AP) threshold hyperpolarization was present immediately after stimulation and at 20 min post-stimulation. These results provide evidence that LI-rMS alters neuronal excitability of excitatory neurons. We suggest that regions outside the targeted region of high-intensity rTMS are susceptible to neuromodulation and may contribute to rTMS-induced plasticity

    Experimental field estimation of organic nitrogen formation in tree canopies

    Get PDF
    The content of organic N has been shown in many studies to increase during the passage of rain water through forest canopies. The source of this organic N is unknown, but generally assumed to come from canopy processing of wet or dry-deposited inorganic N. There have been very few experimental studies in the field to address the canopy formation or loss of organic N. We report two studies: a Scots pine canopy exposed to ammonia gas, and a Sitka spruce canopy exposed to ammonium and nitrate as wet deposition. In both cases, organic N deposition in throughfall was increased, but only represented a small fraction (<10%) of the additional inorganic N supplied, suggesting a limited capacity for net organic N production, similar in both conifer canopies under Scottish summertime conditions, of less than 1.6 mmol Nm2 mth1 (equivalent to 3 kg N ha1 y1)

    Self-Diffusion in Random-Tiling Quasicrystals

    Full text link
    The first explicit realization of the conjecture that phason dynamics leads to self-diffusion in quasicrystals is presented for the icosahedral Ammann tilings. On short time scales, the transport is found to be subdiffusive with the exponent β0.57(1)\beta\approx0.57(1), while on long time scales it is consistent with normal diffusion that is up to an order of magnitude larger than in the typical room temperature vacancy-assisted self-diffusion. No simple finite-size scaling is found, suggesting anomalous corrections to normal diffusion, or existence of at least two independent length scales.Comment: 11 pages + 2 figures, COMPRESSED postscript figures available by anonymous ftp to black_hole.physics.ubc.ca directory outgoing/diffuse (use bi for binary mode to transfer), REVTeX 3.0, CTP-TAMU 21/9

    Automatic segmentation, detection and quantification of coronary artery stenoses on CTA

    Get PDF
    Accurate detection and quantification of coronary artery stenoses is an essential requirement for treatment planning of patients with suspected coronary artery disease. We present a method to automatically detect and quantify coronary artery stenoses in computed tomography coronary angiography. First, centerlines are extracted using a two-point minimum cost path approach and a subsequent refinement step. The resulting centerlines are used as an initialization for lumen segmentation, performed using graph cuts. Then, the expected diameter of the healthy lumen is estimated by applying robust kernel regression to the coronary artery lumen diameter profile. Finally, stenoses are detected and quantified by computing the difference between estimated and expected diameter profiles. We evaluated our method using the data provided in the Coronary Artery Stenoses Detection and Quantification Evaluation Framework. Using 30 testing datasets, the method achieved a detection sensitivity of 29 % and a positive predi
    corecore