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Abstract Accurate detection and quantification of coro-

nary artery stenoses is an essential requirement for treat-

ment planning of patients with suspected coronary artery

disease. We present a method to automatically detect and

quantify coronary artery stenoses in computed tomography

coronary angiography. First, centerlines are extracted using

a two-point minimum cost path approach and a subsequent

refinement step. The resulting centerlines are used as an

initialization for lumen segmentation, performed using

graph cuts. Then, the expected diameter of the healthy

lumen is estimated by applying robust kernel regression to

the coronary artery lumen diameter profile. Finally, ste-

noses are detected and quantified by computing the dif-

ference between estimated and expected diameter profiles.

We evaluated our method using the data provided in the

Coronary Artery Stenoses Detection and Quantification

Evaluation Framework. Using 30 testing datasets, the

method achieved a detection sensitivity of 29 % and a

positive predictive value (PPV) of 24 % as compared to

quantitative coronary angiography (QCA), and a sensitivity

of 21 % and a PPV of 23 % as compared manual assess-

ment based on consensus reading of CTA by 3 observers.

The stenoses degree was estimated with an absolute aver-

age difference of 31 %, a root mean square difference of

39.3 % when compared to QCA, and a weighted kappa

value of 0.29 when compared to CTA. A Dice of 68 and 65

% was reported for lumen segmentation of healthy and

diseased vessel segments respectively. According to the

ranking of the evaluation framework, our method finished

fourth for stenosis detection, second for stenosis quantifi-

cation and second for lumen segmentation.

Keywords Centerline extraction � Lumen

segmentation � Calcium suppression � QCA

Introduction

Coronary artery disease (CAD) is one of the leading causes

of death worldwide [1, 2]. CAD induces plaque build-up in

the coronary arteries, which may cause luminal narrowing

also known as stenosis. Stenoses may induce myocardial

infarction; it is therefore crucial to detect CAD at an early

stage.

Many diagnostic tests are available for detection of

CAD [3]. At present, invasive coronary angiography (ICA)

is the reference standard imaging technique for diagnosing

CAD and quantitative coronary angiography (QCA) is used

to quantify the degree of stenosis. However, ICA is an

invasive procedure and is limited by its projective nature.

Computed tomography coronary angiography (CTA) on

the other hand, is increasingly used to assess CAD and has

the advantage over ICA of being non-invasive. Further-

more, it provides high resolution three-dimensional (3D)
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images of the coronary arteries. In addition to the detection

and quantification of coronary artery stenoses, CTA can

also provide additional information regarding the type of

plaque (calcified, mixed or soft) [4]. It has been shown that

CTA scans can be used to accurately identify the presence

and severity of the stenoses in comparison to ICA in [5].

However, interpreting CTA images for the purpose of

stenosis detection and quantification requires considerable

experience to prevent underestimating or overestimating

obstructive plaque lesions [6], and is therefore a tedious

task. Whereas we are focusing on stenosis grading, similar

approaches may be relevant for CT FFR as well, where the

combination of computational flow models and accurate

segmentations may predict the hemodynamic significance

of a lesion [7, 8].

Consequently, the number of publications presenting

and/or evaluating (semi-) automatic coronary artery ste-

nosis detection and quantification methods on cardiac CTA

have increased in recent years. An algorithm evaluation

framework dedicated to this problem has been introduced

in 2012 (http://coronary.bigr.nl/stenoses) [9].

Different approaches have been proposed to address the

challenge of (semi-) automatically detecting and quanti-

fying stenoses. These methods can be categorised into two

groups: (1) methods that depend on accurate lumen seg-

mentation to compute/estimate healthy and diseased lumen

diameters in order to quantify stenoses [10–15] and (2)

methods that use image features or pattern recognition

approaches to detect stenoses [16–18].

In this study, we present an automatic method for cor-

onary artery lumen segmentation, stenosis detection and

quantification. The method aims at facilitating and sup-

porting the interpretation of cardiovascular CTA data by

radiologists. The method has been evaluated through the

Coronary Artery Stenoses Detection and Quantification

Evaluation Framework [9].

The remainder of this paper is organized as follows. In

‘‘Materials and methods’’ section, we describe the data used,

our method and the parameter value selection. ‘‘Results’’

section is dedicated to the evaluation of our approach.

Results of our approach are discussed in ‘‘Discussion’’ sec-

tion, as well as the limitations and possibilities for future

studies. Conclusions are given in ‘‘Conclusion’’ section.

Materials and methods

Imaging data

The data used for this study was obtained from the publicly

available Coronary Artery Stenoses Detection and Quan-

tification Evaluation Framework (http://coronary.bigr.nl/

stenoses). The datasets provided by this framework were

retrospectively acquired in three university medical centers

(Erasmus MC, University Medical Center, Rotterdam, the

Netherlands; University Medical Center Utrecht, Utrecht,

the Netherlands; and Leiden University Medical Center,

Leiden, the Netherlands). The patients underwent both

CTA and QCA examinations. Below, we provide infor-

mation about the image acquisition, data selection and

reference standards. Additional information can be found

on the website (http://coronary.bigr.nl/stenoses/about.php).

The CTA data was acquired on : (1) a dual-source CT

scanner (Somatom Definition, Siemens, Forchheim, Ger-

many) at the Erasmus MC, (2) a 64-slice CT scanner (Bril-

lance 64, Philips Medical Systems, Best, the Netherlands) at

the UMCU, and (3) a 320-slice CT scanner (Aquilion ONE

320, Toshiba Medical Systems, Tokyo, Japan) at the LUMC.

A non-enhanced CT scan was performed before the CTA; the

total calcium score for each patient was calculated using a

dedicated software in each center.

A single image volume per patient was used, recon-

structed at the mid-to-end diastolic phase (350 ms before

the next R-wave or at 65–70 % of the R–R interval), with

either retrospective (Siemens and Philips data) or pro-

spective (Toshiba data) ECG gating.

Sixteen patients, distributed over five calcium categories

in order to have a representative population that undergoes

CTA examination, were selected in each of the three cen-

ters, resulting in 48 datasets. The calcium categories [19]

are defined as follows: no calcium (11 patients, 23 %),

between 0.1 and 10 (6 patients, 10 %), between 11 and 100

(14 patients, 31 %), between 101 and 400 (11 patients,

23 %), and above 400 Agatston score (6 patients, 12 %).

The population has a mean age of 58.76 ± 8.71 (41–80)

years old and consists of 30 males (63 %).

Eighteen of the 48 CTA images, together with the CTA

and QCA reference standards, were made available for

training; the remaining 30 datasets were used for testing the

algorithms. For testing, only the CTA images were made

available. The distribution of patients over the two sets is

explained in detail in recent work of Kirisli et al. [9].

Three independent experienced observers from Erasmus

MC, University Medical Center Rotterdam, analysed the

CTA datasets and provided the ground truth via consensus

reading. A dedicated tool implemented in MeVisLab

(http://www.mevislab.de) was used by the observers for the

annotations. QCA analysis was performed by an indepen-

dent observer blinded to the CTA results. The ground truth

data consists of quantification and stenosis detection on

both the CTA and ICA datasets, as well as lumen seg-

mentation on the CTA dataset (Fig. 1).
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Method

The method described in this paper consists of the fol-

lowing steps: (1) centerlines are extracted using predefined

start and end points in the arteries (‘‘Centerline extraction’’

section), (2) bifurcation points of the extracted vascular

tree are detected and the centerlines are subsequently

divided into segments (‘‘From centerlines to segments’’

section) (3) coronary artery lumen segmentation is per-

formed using the centerline segments as initialization

(‘‘Lumen segmentation’’ section), and (4) stenoses are

detected and quantified using an area based approach

(‘‘Stenosis detection and quantification’’ section).

Centerline extraction

The centerlines of the coronary artery tree are extracted as

follows.

First, for each branch of the coronary artery tree, an initial

centerline is obtained, by applying the minimum cost path

extraction method presented in [20]. A 3D path with mini-

mum cost is found between two manually placed seed points

in the coronary arteries, located at the ostium and at the distal

end of each coronary artery. The cost image Cv(x), (with x a

location in the image) used for centerline extraction is based

on a multi-scale vesselness measure V(x) [21] and a sigmoid

like intensity threshold function T(x) [20], and is defined as:

CvðxÞ ¼
1

VðxÞTðxÞ þ �; ð1Þ

where � is a small positive value introduced to avoid sin-

gularities (see ‘‘Parameter selection’’ section, for parameter

values).

However, the initial centerlines obtained are inaccurate

at the bifurcations and at calcified locations, where the

centerline is attracted towards the calcified part of the

vessel due to relatively low cost values inside the calcifi-

cations. Therefore, the centerlines are refined in a sub-

sequent step.

In this second step, calcium lesions within the artery are

suppressed, based on the intensity profile of the contrast

material along the initially extracted centerline. In the ideal

case, i.e. a healthy vessel presenting no calcified plaque,

the intensity profile is a smooth curve with a gradual

decrease in intensity along the artery (see Fig. 2a) [22, 23].

But, in the case that a centerline passes through a calcified

plaque, the intensity profile presents a spike, indicating the

presence of a high intensity object along the centerline

path. In the case where the contrast material is not evenly

distributed throughout the artery, intensity variations not

corresponding to calcified plaques may also appear in the

intensity profile. In order (1) to differentiate true calcium

objects from noise, and (2) to estimate the intensity value

of the contrast material within the coronary artery, we

apply a cubic fit to the intensity profile of the initially

extracted centerline. Figure 2 shows examples of intensity

profiles along different artery segments.

Given an intensity profile for centerline points x 2 X;

where X is the set of centerline points, point x is assigned as

belonging to a calcium object if it obeys the condition:

Fig. 1 Extracted initial

centerlines for one of the

datasets. a Right branch, b left

branch
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IðxÞ � FðxÞjx2X � Tca; ð2Þ

where I(x) is the CTA image intensity at position x along

the centerline, F(x) is the value at position x based on a

fitted cubic polynomial and Tca is a predefined threshold

value (see ‘‘Parameter selection’’ section).

All the centerline points x which satisfy Eq. 2 are treated

as seedpoints to initialize a region growing segmentation

with a 3D 6-neighbourhood relation. If a connected voxel

has an intensity greater than equal to maxx2XðFðxÞÞ, it is

classified as belonging to a calcium object. The segmented

calcium object is suppressed by setting its intensity value to

1,024 grayscale value (GV) (1,024 GV = 0 Hounsfield

unit). Figure 3 shows an example where a calcium lesion is

suppressed.

Subsequently, to move the centerlines running close to

the border of the lumen towards the vessel center, we

generate a stack of multi-planar reformatted (MPR) ima-

ges, i.e. a stack of images perpendicular to the initial

centerline. We then apply a minimum cost path approach to

this image stack, as proposed by Tang et al. [24]. Using a

modified cost image Cmv(x) based on both V(x) and a

medialness measure M(x) [25], defined as:

CmvðxÞ ¼
1

VðxÞMðxÞ þ �: ð3Þ

Figure 4 shows an example of an MPR image generated

using the refined centerlines.

From centerlines to segments

To extract the lumen centerlines (‘‘Centerline extraction’’

section), a unique starting point (located in the ostium) and

multiple end points are used. As a consequence, the

extracted centerlines present multiple overlapping paths. At

locations where a vessel bifurcates, a sudden drop in the

vessel diameter occurs. This influences the stenoses

detection and quantification step (‘‘Stenosis detection and

quantification’’ section) which is based on cross-sectional

vessel area. In order to facilitate further processing, we first

filter the centerline points using Mean Shift filtering [26],

such that matching co-linear centerlines are closer to each

other. Subsequently, we can merge centerlines representing

the same segment, and detect bifurcations at locations

where centerlines are diverging.

Fig. 2 Plot of the intensity (in GV) as a function of position along the

centerline and the corresponding CMPR images for three coronary

artery segments. a Segment without calcium objects, b segment with

multiple calcium objects, c segment with a high density calcium

object

b

1850 Int J Cardiovasc Imaging (2013) 29:1847–1859

123



For the filtering, each centerline Si¼1...m (with m the total

number of centerline segments) is equidistantly resampled

to a set of spatial points fx1. . .xni
g with ni the number of

points of the centerline Si. We then filter the centerlines

using the approach proposed by van Walsum et al. [27],

and subsequently build a graph from these filtered center-

lines representing the coronary tree structure.

The Mean Shift filtering algorithm used is represented as

follows:

xsþ1
kl ¼

X

ij

ckl;ij/kl;ijGs xs
kl � xij

�� ��� �
P

i0j0 ckl;i0j0/kl;i0j0Gs xs
kl � xi0j0

�� ��� � xij ð4Þ

which states that in each iteration, point x is replaced with a

weighted average of the points of all centerlines. The

subscripts ij, kl represent the jth point on the ith centerline

and the lth point on the kth centerline. Convergence is

reached if the distance between xs and xs?1 is less then a

small threshold (d).

The weights in Eq. 4 have three components. ckl,ij is a

correspondence term, based on connectivities between

points of different centerlines. It uses Dijkstra graph search

algorithm [28] to determine the set of connections

Dki = {dkl,ij} between centerlines Sk and Si, with dkl,ij a

connection between xkl and xij. ckl,ij is defined as:

ckl;ij ¼
0 if dkl;ij 62 Dki

dkl;ij0
� ��� ���1

if dkl;ij 2 Dki

�
ð5Þ

with j � j the cardinality of the set.

/kl,ij decreases the weights for points with differently

oriented tangent, and prevents averaging over bifurcations.

It is defined as:

/kl;ij ¼ G/ acos tkl � tij

� �� �
; ð6Þ

with G/ the Gaussian kernel with standard deviation r/

and tij the (normalized) tangents vector at xij. This orien-

tation factor is 1 when the tangents are parallel, and less

then 1 when the tangents diverge.

Gs is the Gaussian weighted distance with a standard

deviation of rs to decrease the influence of points far away.

Application of Eq. 4 to all points xij of all centerlines Si

yields shifted centerlines S0i. The shifting process is fol-

lowed by combining these shifted centerlines into a

directed graph representation. To this end, all centerlines

are added to a graph consecutively, where the initial graph

is empty. For each centerline to be added, the overlapping

parts with the existing graph are determined, and the

overlapping parts are merged in the graph’s data structure.

For each of the non-overlapping parts, new edges are cre-

ated in the graph. After merging all the centerlines into the

graph, each path and node (bifurcation point) of the graph

structure contains references to the corresponding parts of

the (shifted) centerlines. Figure 5 shows an example of a

segmented and labelled coronary artery tree, where dif-

ferent colors indicate different segments and the white balls

represent the bifurcation points, start points and the end

points.

Fig. 3 A random cross-

sectional image slice through a

calcium lesion. a Before

calcium suppression, b after

calcium suppression

Fig. 4 a CMPR image before calcium object suppression and centerline refinement, b CMPR image after calcium object suppression and

centerline refinement. It can be observed from b that the calcium object is much better separated from the lumen
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Lumen segmentation

The coronary lumen is segmented using a method com-

bining graph-cuts and robust kernel regression [29]. The

method is applied segment wise and uses the refined cen-

terline as initialization. The segmentation process is per-

formed on the MPR image stack.

The graph-cuts method uses an application specific unary

term based on the image intensities of the centerlines (voxel

likelihood) and a binary term based on the image gradient

magnitude (edge term). Essentially, the voxel likelihood

term assigns high foreground weights and low background

weights to voxels with similar intensities as the centerline

intensities, and vice versa for voxels that have dissimilar

intensity values. The voxel likelihood term is defined as:

PrðIxjfx ¼ 1Þ ¼ �0:5 0:75� 0:25 erf
Dx � Tin

ri

� 	� 	

� erf
Dx � Tout

ri

� 	
� 1

� 	 ð7Þ

with Dx ¼ jIx � Îx0 j the absolute difference between the

intensity of the voxel (Ix) and the local intensity estimate (Îx0),

Tin the threshold parameter for intensities within the lumen,

Tout = k(Mean(I) - Io) the difference between the mean

intensity I along the centerline and the intensity outside Io, i.e

the threshold parameter for intensities outside the lumen.

Figure 6b shows an axial slice after the application of Eq. 7.

The edge term uses the gradient magnitude at the

boundary of two voxels. A higher value corresponds to a

high probability of the voxel label being switched, between

lumen and background. The weight of a label switch

between voxel x and y is defined as:

wx;y ¼ �log 1� exp
�jrIj2ðx; yÞ

2r2
g

 ! !
: ð8Þ

After the graph-cut segmentation each voxel is assigned

to the lumen or non-lumen (see Fig. 6c). Because this

segmentation is discrete and because it can contain outliers,

the segmentation is smoothed and outliers are removed

with a robust kernel regression approach. The graph-cut

lumen boundary is first described in a cylindrical

coordinate system by finding, in each cross-section, the

intersection between rays, sampled at fixed angles from the

centerline. This representation is subsequently smoothed

with a robust kernel regression approach, ensuring that

both outliers are removed and a smooth boundary

representation is obtained (see Fig. 6d).

Stenosis detection and quantification

From the coronary artery lumen segmentation (per segment

of the coronary artery tree), the cross-sectional area Ai of

the vessel is computed at every position i along the vessel

centerline, i 2 1; n½ � with n being the number of positions

along the centerline. The radius is then derived as

ri ¼
ffiffiffiffiffiffiffiffiffiffi
Ai=p

p
.

To compute the degree of stenosis, the radius of a

healthy vessel is needed as a reference. We estimated the

radius r̂ of the healthy vessel by applying a robust weighted

Gaussian kernel regression [30] to the 1D function

r describing the vessel radius along the centerline:

r̂i ¼
Pn

i0¼1 Nði0ji; riÞwi0ri0Pn
i0¼1 Nði0ji; riÞwi0

; ð9Þ

where,

wi ¼ Nðrijrmax
i ; rrÞ

rmax
i ¼

Pn

i0¼1
Nði0 ji;rmaxÞri0Pn

i0¼1
Nði0 ji;rmaxÞ

Nði0ji; rÞ ¼ 1

r
ffiffiffiffi
2p
p e

� i0�ið Þ2
2r2

2
6664 ð10Þ

Fig. 5 Result of automatic

bifurcation detection in which

different colors represent

different segments. a Right

coronary artery tree, b left

coronary artery tree
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Parameter selection

Some of the parameters used in our method were optimized

using the training datasets provided by the framework. For

others, the values were chosen identical to our previous

works The lower and upper scales for the multi-scale

vesselness measure (Vx) used in Eq. 1 and in Eq. 3 were set

to 0.8 and 2 mm, with 3 intermediate scales. The other

parameters a, b, c (used in Vx), w1, w2, w3, as and bs (used

in Tx) from Eq. 1 were taken from [20] and are presented in

Table 1. The minimum and maximum scales for the me-

dialness measure (Mx) used in Eq. 3 were set to 0.5 mm

and 2 mm, the number of intermediate scale steps to 8 and

the number of angles to 24. The value of � in both equa-

tions was set to 0.0001. The value of Tca in Eq. 2 was set to

200 GV. The CMPR images were generated at 0.5 mm

slice spacing and with a cross-sectional area of

10 9 10 mm2, and a voxel size of 0.1 9 0.1 9 0.5 mm3.

The parameters used for lumen segmentation in ‘‘Lumen

segmentation’’ section were taken from [29]. The value of

rs and d in Eq. 4 were set to 0.5 and 0.01 respectively, r/

in Eq. 6 was set to 0.1. In Eqs. 9 and 10 of the stenoses

detection/quantification, the parameter rx (corresponding

to centerline longitudinal distance) was set to 8, rr (cor-

responding to radius) to 0.25, and rmax to 200.

As QCA is the reference standard, it was observed from

the training experiments that the CTA derived measure

slightly overestimates the degree of stenosis in the mild

stenotic regions. This is probably due to the fact that QCA

measurements are made in 2D and our method quantifies

the stenoses in 3D on the CTA image. Therefore, we

investigated the possibility to improve the quantification

measure, correcting for this bias. We performed a few pilot

experiments and found out that improved stenoses quanti-

fication matching between CTA and QCA can be achieved

by applying an off-set value of -20 (represented as %) to

all lesions detected on CTA with a degree between 20 and

50 % (Fig. 7).

Our method also overestimates the degree of stenosis on

CTA in case of highly calcified lesions, due to the

Fig. 6 A cross-sectional image

of a randomly selected coronary

artery, presenting a calcium

lesion and a side branch. a Input

image, b resulting image after

applying a lumen likelihood

function, c binarized image after

lumen segmentation using graph

cuts (lumen bright, background

black), d the resulting lumen

segmentation (in white) after

kernel regression

Table 1 Parameters used in computing the vesselness measure Vx

and the threshold function Tx

a b c w1 w2 w3 as bs

0.5 0.4 230 0.99 0.10 0.10 1028 GV 965 GV
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blooming effect. We corrected the stenoses grade for due to

blooming as follows:

G0CTA ¼ GCTA � 10; if IðxÞ � FðxÞ� 500

& GCTA� 70%
G0CTA ¼ GCTA; otherwise

8
<

:

where G0CTA is the refined CTA degree of stenosis, GCTA

the initial one, and the condition selects severe stenosis

close to dense calcified objects. The values used in the

equation were obtained from the pilot experiments.

Using the above parameters, 90 % of the training lesions

detected by our method on CTA images were estimated in

the correct or adjacent class (Fig. 8).

Results

Tables 2, 3 and 4 present the training and testing results of

our method with respect to the performance of the three

observers. The training set consists of 18 datasets and the

testing set of 30 datasets.

The ability of a method to discriminate significant ste-

noses (i.e. stenoses C50 %) from non-significant ones was

evaluated. Table 2 shows the average results of our method

and three observers for stenosis detection measures: sen-

sitivity (Sens.) and positive predictive value (PPV). The

results show that on the testing datasets our method obtains

a QCA sensitivity of 29 % and a PPV of 24 %. With

respect to CTA we obtain a sensitivity of 21 % and a PPV

of 23 %. In general, our results are not as good as the

averaged observers’ performance (sensitivity of 75 %, PPV

of 45 % on QCA; sensitivity of 73 %, PPV of 67 % on

CTA). The ability of our method to discriminate significant

stenoses from non-significant ones remains very limited.

However, as compared to the current state-of-the art

algorithms, our method ranks fourth out of 12 submissions

on the test set.

Fig. 7 Stenoses detection and

quantification. a Shows the

reconstructed lumen tree of a

patient in which the red shade

highlights narrowing of the

lumen. b Various curves as a

function of centerline position

showing: the true radius (black),

estimated radius (green),

detected stenoses (blue) and the

stenoses degree (black dotted).

The cross on the stenosis in

(a) corresponds to the vertical

line at the 18 mm mark in (b). It

can also be observed that two

stenoses were detected and one

of them was significant
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Fig. 8 Stenoses detection and quantification. X-axis: our submission

(SUB), y-axis: the reference data (REF)—results obtained on the 18

training datasets after optimization of the parameters: 90 % of the

stenoses detected with our new method are quantified either in the

correct risk category or in the adjacent risk category (yellow and

green detections)

Table 2 Detection—our method’s performances compared with the

three observers

Method Training (%) Testing (%)

QCA CTA QCA CTA

Sens. PPV Sens. PPV Sens. PPV Sens. PPV

Observer 1 72 49 92 57 86 40 83 61

Observer 2 76 66 82 73 75 51 70 81

Observer 3 52 68 63 74 64 43 66 60

Our method 48 63 37 56 29 24 21 23
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Table 3 shows the average results of our method and

three observers for stenosis quantification measures.

Despite the poor performance of our method to discrimi-

nate the non-significant stenoses from significant ones

(hard threshold at 50 %), our method was able to quantify

the degree of stenosis as compared to the QCA with an

accuracy comparable to the experts. The quantification

agreement obtained with the proposed approach as com-

pared to the CTA reference was fair. It should be pointed

out that, on the training set (j = 0.37) 90 % of the lesions

were estimated in the correct or adjacent class. An aver-

aged absolute difference of 31 %, an RMS difference of

39 %, and a weighted Kappa value j = 0.29 were obtained

on the test set. The observers (on average) achieved an

averaged absolute difference of 31 %, an RMS difference

of 36 % and j = 0.75. Our method ranks second out of

nine other submissions on the test set.

Table 4 shows the average results of our method and

three observers for coronary artery lumen segmentation

measures. The similarity between our method and the

observers were measured by the Dice similarity index

(Dice). The distance between the segmentations was

quantified by the root mean squared distance (RMSD) and

maximum distance (MAXD). Overall, the Dice and RMSD

values obtained on healthy vessel segments were better

than the values obtained on diseased segments. The Dice

and RMSD were worse than the averaged observers’ per-

formance, but the MAXD was better. Figure 9 presents a

few examples on longitudinal views of various coronary

artery segments. In comparison to those obtained by one of

the three observers and the one obtained using our previous

approach [31] (i.e. without the calcium suppression step), it

can be seen that our segmentation results are very close to

the ones obtained by the manual method. Our method ranks

second out of six other submissions.

Discussion

Evaluated algorithm

Although the coronary artery lumen can be automatically

segmented with a precision similar to the experts, there is

still room for improvement for our stenoses detection/

quantification approach. In the current approach, the

stenoses are quantified solely based on the diameter

profile of the segmented lumen. Therefore, in case of

diffuse disease or long stenoses, the degree of luminal

narrowing is generally underestimated. Another possible

explanation for the poor performance of our method with

respect to stenosis detection could be due to the fact that

we assumed the vessels to be cylindrical, hence looked at

the problem as reduction in diameter. We could have

used an area based stenosis measure as an alternate

approach for detection, or measure the minimal diameter

in the segmentation for non-circular cross-sections. As

the method does not detect a lot of false positives (41

FP’s over 48 datasets), it could be used in clinical

practice for triage or as a second reader to assist the

radiologist.

Table 3 Quantification—our method’s performances compared with the three observers

Method Training Testing

QCA CTA QCA CTA

Abs diff (%) RMS diff (%) Weighted j Abs diff (%) RMS diff (%) Weighted j

Observer 1 29.7 35.1 0.71 30.1 35.2 0.74

Observer 2 25.5 31.8 0.84 31.1 36.5 0.77

Observer 3 29.1 35.1 0.73 30.6 36.9 0.73

Our method 26.3 34.8 0.37 31.0 39.3 0.29

Table 4 Segmentation—our method’s performances as compared to the observers

Method Training Testing

Dice (%) MSD (mm) MAXSD (mm) Dice (%) MSD (mm) MAXSD (mm)

D H D H D H D H D H D H

Observer 1 74 79 0.26 0.26 3.29 3.61 76 77 0.24 0.24 2.87 3.47

Observer 2 66 73 0.31 0.25 2.70 3.00 64 72 0.34 0.27 2.82 3.26

Observer 3 76 80 0.24 0.19 3.07 3.25 79 81 0.23 0.21 3.00 3.45

Our method 66 70 0.37 0.32 2.49 3.04 65 68 0.39 0.41 2.73 3.20

Diseased (D)/healthy (H) segments

Int J Cardiovasc Imaging (2013) 29:1847–1859 1855

123



The relatively low value of the Kappa statistic in the

CTA stenoses quantification measure may either be caused

by a high number of false positives/negatives or by a high

number of lesions reported with more than one grade dif-

ference as compared to the CTA reference, or by the linear

weights which heavily penalize misclassifications. On the

training set, a weighted Kappa value of 0.37 was obtained,

and only 10 % of the stenoses had a quantification error of

more than one grade (Fig. 8). This highlights that the lin-

early weighted Kappa is very sensitive to misclassification.

The majority of the stenoses detected with our approach

were quantified with an error of only one grade, and most

of the misclassifications occured between the mild

(20–50 %) and moderate (50–70 %) grades. As 50 % is the

hard threshold used to discriminate between significant and

non-significant lesions, accurate detection of significant

stenoses remains a challenge. Considering that our method

may be used for triage of patients or as a second reader, the

use of a third group ‘‘maybe significant’’, in addition to the

significant and non-significant group could be considered,

to which all the borderline (40–60 % for instance) detected

stenoses are assigned. The radiologists would then have to

inspect in more details those stenoses to make a final

decision.

The results show that the additional centerline refine-

ment step consisting of calcium suppression from the cost

image improves the segmentations compared to our

previous approach [31]. Previously, the centerline was

attracted to the calcified plaque and therefore, the plaque

rather than the vessel was segmented. A simple thres-

holding technique for removing calcium would not work

very efficiently on CTA scans as the intensity of the con-

trast material between different patients and different

vessels is quite dissimilar [22]. Error in estimating a global

threshold value for a patient would result in either com-

pletely missing medium/small calcium lesions or over

segmenting the calcium lesion by including the surround-

ing contrast material. We chose fitting the intensity profile

with a cubic polynomial based on the pilot experiments

done on the training data set. Cubic polynomial fitting

provided us with a good estimate for a threshold to dif-

ferentiate between the background contrast intensity and

the calcium objects. Higher order polynomials gave us a

very smooth fit, making it difficult to estimate the threshold

value to separate contrast material from calcium peaks.

The segmentations of the current approach are in better

agreement with the observer’s ones. The issue with calci-

fied plaques is not completely solved. We were able to

prevent the centerlines from running into calcified objects,

but for highly calcified regions (Fig. 9d, e), the method

may have issues finding the correct lumen. In such cases,

our refined centerline tends to run at the very outer border

of the lumen, and the derived segmentation is of minimal

radius size. However, in such extreme cases, it is not

Fig. 9 Coronary artery lumen segmentation examples in CMPR that

are based on the manually annotated centerlines. Our previous method

(method without the calcium suppression step in the centerline

refinement) (red), proposed method (yellow), one of the observers

(green). a–c Cases where our method (with the calcium suppression

step in the centerline refinement) achieves segmentation similar to the

observer. d Case where the method avoids the calcified plaque and the

observer segmented the other side of the plaque. e Case where an

issue with large calcified plaque remains. f Example of segmentation

of a coronary segment presenting a soft plaque. Discontinuities in the

segmentation, such as the segmentations in d and e, are a visualization

artefact: the segmentation runs out of the CMPR surface

1856 Int J Cardiovasc Imaging (2013) 29:1847–1859
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always clear how to manually segment the lumen either,

and the inter-observer variability is therefore also high.

A limitation of our centerline extraction step is the need

to initialize the start and the end points of the coronary

arteries. The Coronary Artery Stenoses Detection and

Quantification Evaluation Framework organizers provided

the participants with the start and the end points of all the

vessels that were of interest. For new datasets, the user has

to annotate the start and the end point. The initialization

process can be simplified by automatically defining the

start point in the aorta using the method proposed by [20].

Automatic processing can be further improved by finding

the end points using information from an atlas-based cor-

onary density estimate [32]. However, our method can also

be used in combination with centerlines that have

been automatically obtained [33–36]. The automatically

obtained centerline could be used as the initial centerline in

our method and subsequently followed by calcium sup-

pression, centerline refinement, lumen segmentation, and

stenoses detection and quantification.

Comparison with other evaluated algorithms

Nine of the eleven other evaluated algorithms were

developed following a work-flow similar to ours, consist-

ing of (1) the computation of lumen segmentation, either

directly from the input CTA image or using previously

extracted centerlines, and (2) the subsequent detection (and

quantification) of coronary artery stenoses. Only one of the

evaluated algorithms does not involve lumen segmentation,

but is using features extracted from the CTA image to

detect plaques [37].

To detect and quantify lesions, six out of the nine

algorithms estimated a healthy lumen radius by applying

various regression approaches to the segmented lumen

radius profile (linear for the approaches of [38–42], second-

order for the approach of [43], robust for the approach of

[31]). Only in the algorithm proposed by [44], the outer

vessel wall was segmented from the CTA image. The

remaining two proposed algorithms analyze intensity and

geometry features [45, 46].

Given an accurate lumen segmentations, our approach

outperforms the algorithms proposed by [39] and [44] in

the quantification stage, and achieves the best (though fair)

quantification agreement as compared to the CTA refer-

ence standard. The results thus suggest that robust regres-

sion is a good approach to quantify lesions following

lumen segmentation. However, there is still room for

improvement. Refinement of the stenosis grades using

additional morphological and intensity features may lead to

improvements in both the detection and quantification

steps.

Conclusion

We presented a method to automatically detect and quan-

tify coronary arteries stenoses, based on coronary artery

lumen segmentation. The current results show that the

coronary artery lumen can be automatically segmented

with a precision similar to the experts. Quantification of the

stenoses with respect to the QCA measure can also be

performed close to those obtained by the observes. How-

ever, automatic discrimination between significant and

non-significant lesions in CTA remains a challenge.
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