We have investigated the time-modulated coherent quantum transport phenomena
in a ballistic open quantum dot. The conductance G and the electron dwell
time in the dots are calculated by a time-dependent mode-matching method. Under
high-frequency modulation, the traversing electrons are found to exhibit three
types of resonant scatterings. They are intersideband scatterings: into
quasibound states in the dots, into true bound states in the dots, and into
quasibound states just beneath the subband threshold in the leads. Dip
structures or fano structures in G are their signatures. Our results show
structures due to 2ℏω intersideband processes. At the above
scattering resonances, we have estimated, according to our dwell time
calculation, the number of round-trip scatterings that the traversing electrons
undertake between the two dot openings.Comment: 8 pages, 5 figure