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2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitously
distributed endocrine-disrupting chemical and reproductive
toxicant. In order to elucidate low-dose TCDD-mediated effects
on reproductive or endocrine functions, female Sprague-Dawley
rats were orally administered various concentrations (20, 50, or
125 ng/kg once weekly) TCDD for 29 wk. A proteomic analysis of
the ovaries by two-dimensional gel electrophoresis and matrix-
assisted laser desorption/ionization (MALDI) tandem mass spec-
trometry showed distinct changes in the levels of several pro-
teins that are relevant markers of TCDD toxicity. Serum
estradiol (E2) levels of TCDD-treated animals were markedly
lower than control. There were no significant differences in bone
mineral density (BMD) of femurs. The body weight of the 125-ng/kg
TCDD group was significantly decreased relative to control and
there was also a significant reduction in absolute and relative
ovarian weights. Expressions of selenium binding protein 2, glu-
tathione S-transferase mu type 3, Lrpap1 protein, NADPH, and
peptidylprolyl isomerase D were upregulated, while prohibitin
and N-ethylmaleimide-sensitive factor expression levels were
downregulated. Data provide further insight into the mecha-
nisms by which TCDD disrupts ovarian function by indicating
which differential protein expressions following low-dose TCDD
exposure.

An endocrine-disrupting chemical (EDC) is defined as an
exogenous substance/mixture that alters function(s) of the

endocrine system and consequently produces adverse health
effects in intact organism, or progeny, or (sub)populations (Roy
et al., 1997; Choi et al., 2004). 2,3,7,8-Tetrachlorodibenzo-p-
dioxin (TCDD) is a ubiquitously distributed EDC and is
recognized to be the most potent toxic compound among the
polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans
(PCDF). In mammals, TCDD and other dioxin-like compounds
exert effects on various biological systems, including the so-
called “wasting syndrome,” hepatoxicity, immunotoxicity,
reproductive disorders, carcinogenicity, and disturbances in
endocrine systems (Okey et al., 1994; Diehl-Jones & Bols,
2000). Dioxin initially binds and subsequently activates the
aryl hydrocarbon receptor (AhR). The TCDD–AhR complex is
subsequently translocated to the nucleus of the cell, forming a
heterodimer with the AhR nuclear translocator (ARNT). The
TCDD–AhR–ARNT complex adheres to dioxin-responsive
elements (DRE), inducing the transcription of a number of
genes (Tang et al., 2008), and alters the expression of a wide
range of proteins (Kim et al., 2004).

Proteomic methods enable a systematic screening of the
expressed protein profile (Conrad et al., 2008), and can detect a
number of proteins whose levels are changed in response to a
diverse spectrum of toxic agents including TCDD (Joo et al.,
2003). In the thymus of marmosets treated with TCDD, the
deregulated proteins are related to immune responses (Oberemm
et al., 2005). Some investigators, using two-dimensional gel
electrophoresis to determine placental proteins, showed that rat
placentas exposed to TCDD were in a hypoxic state at the end
of pregnancy (Ishimura et al., 2002). Analysis of the changes
in the rat hepatoma cell proteome indicated a mechanism by
which TCDD may affect cellular homeostasis and survival
(Sarioglu et al., 2008).

Reproductive and endocrine disorders are considered as the
most sensitive adverse effects correlated with TCDD exposure
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(Mutoh et al., 2006). The ovary has been recognized as the
main organism responsible not only for germ-cell storage but
also for secretion of various steroidal hormones. Therefore,
ovarian dysfunction may lead to adverse consequences, some
of which are due to hormonal imbalance (Yoshida et al., 2005).
AhR and ARNT were reported to localize in the ovary
(Khorram et al., 2002). Bruggeman et al. (2006) showed the
effects of TCDD on the ovary and liver in 1-d-old chickens as
evidenced by alterations in proteins that could not be directly
linked to drug on xenobiotic metabolism but appeared to be
involved in oxidative stress, blood clotting, calcium regulation,
and electron transport. Some studies found that the toxicity
following chronic exposure was different from acute exposure
(Franczak et al., 2006; Goldstein et al.,1982). Few studies have
addressed the proteomic reactions of ovary tissue following
chronic exposure to low doses of TCDD. In order to explore
the chronic effects of low-dose treatment with TCDD, two-
dimensional gel electrophoresis and matrix-assisted laser
desorption/ionization (MALDI) tandem mass spectrometry
(2-DE and MALDI-TOF/TOF) were used to examine the rat
ovary proteome following TCDD exposure.

MATERIALS AND METHODS

Animals
All animal experiments were performed according to the

guidelines for Animal Welfare of the National Ethics Committee.
As the Sprague-Dawley rat is sensitive to the effects of TCDD
(Kociba et al., 1978), in total 32 female Sprague-Dawley rats
were obtained from the Chinese Academy of Military Medical
Sciences (SCXK-2002-001). Upon receipt they were 6 to 6.5 wk
old, weighing approximately 215 g. The rats were randomly
assigned to control or one of three dose groups. Rats were housed
4–5 per cage in the specific-pathogen-free (SPF) barrier unit with
a 12-h light/dark cycle at 21 ± 1ºC and 50 ± 10% relative humid-
ity. Rats had free access to distilled water and rodent food. They
were held for 1 wk of acclimation prior to the start of the study.

Animals were administered TCDD by a gastric tube once
per week (0, 140, 350, or 875 ng TCDD/kg/wk) and were
weighed every week at the same time for 29 wk. Control
animals received the vehicle only. The once-weekly TCDD
administration schedule was chosen in order to reduce the
irritation. These doses of TCDD were equivalent to concentra-
tions of 0, 20, 50, or 125 ng TCDD/kg.

Vaginal cytology was conducted before sacrifice to deter-
mine the estrous cycle phase of rats. Only 3 rats were in the
metaestrous phase, belonging to the 0-, 20-, and 125-ng/kg
groups, respectively, and the rest were all diestrous.

Rats were sacrificed by CO2 asphyxiation. Serum samples
were collected for hormonal assays, and ovary tissues were
removed, weighed, and frozen in liquid nitrogen for subsequent
analysis. Femurs were excised, and soft tissue was removed
and stored at –20ºC until further study.

Chemicals
TCDD (lot ER011005-01) was purchased from Cambridge

Isotope Laboratories, Inc. (CIL, USA). Purity and identity
were established by using a variety of chromatographic and
spectroscopic methods, such as gas chromatography with
flame ionization detector (GC/FID) and gas chromatography–
mass spectrometry (GC/MS). Chemical purity was determined
to be over 99%. The TCDD powder was dissolved and stored
in analytic-grade acetone. Dose formulations for treatment
were prepared weekly by mixing the TCDD solution in corn oil
vehicle.

Estradiol (E2) Measurements
Serum concentrations of estradiol (E2) were measured by

enzyme-linked immunosorbent assay (ELISA) using kits pro-
vided by Adlitteram Diagnostic Laboratories (USA), according
to the procedures recommended by the supplier. The concen-
trations were determined by using a microplate spectrophotom-
eter and were read at an optical density of 450 nm.

Bone Densitometry
The bones were scanned with Challenger osteodensitome-

ters (Montpellier, France) using the dual energy x-ray absorpti-
ometry (DEXA) principle. Each bone was scanned at the distal
region.

Ovary Protein Preparation
Frozen ovary samples were mashed into powder using a

ceramic mortar and pestle chilled with liquid nitrogen. Then
the ovary powders from eight animals in the same group were
pooled together before further analysis.

The pooled powdered tissue (approximately 300 mg/sample)
was subsequently dissolved in lysis buffer (8 M urea, 2 M
thiourea, 4% CHAPS, 1% DTT, 0.8% ampholine, pH 3–10)
followed by sonicating for 5 min and were centrifuged at
25,000 × g for 30 min at 4°C. The Bradford protein assay kit
was used for measuring protein concentrations.

Two-Dimensional Electrophoresis
The first dimension of gel separation was carried out with 18-

cm pH 3–10 immobile pH gradient (IPG) strips following the
manufacturer’s protocol (Bio-Rad, Hercules, CA) with minor
modifications. Samples containing up to 500 μg protein were
loaded and isoelectric focusing (IEF) was performed in the IPG-
phor isoelectric focusing system (Pharmersham) by stepwise
increase of the voltage as follows: 0–500 V for 2 h, 500 V for 5 h,
500–3500 V for 3 h, and finally maintained at 3500 V until the
total volt-hours reached 45 kVh. The temperature was kept at
16°C.

Strips were equilibrated for 15 min in equilibration buffer (6 M
urea, 2% sodium dodecyl sulfate [SDS], 0.05 M Tris-HCl, pH 6.8,
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TCDD-MEDIATED PROTEOMIC OVARIAN CHANGES 719

30% glycerol, and trace bromophenol blue containing 2% DTT),
and then equilibrated again for 15 min in the same buffer contain-
ing 2.5% iodoacetamide instead of DTT. Equilibrated IPG strips
were transferred onto 12% uniform polyacrylamide gels and run in
a PROTEAN II Xi cell tank at 15 mA per gel for the first 15 min
and then at a constant voltage of 250 V until the dye front reached
the bottom of the gel. The gels were visualized using Coomassie
brilliant blue R250 staining, after which two-dimensional (2D) gels
were imaged using Powerlook 2100XL (UMAX, Fremont, CA).

Image Analysis
Image analysis was performed by using PDQuest 7.3.0 soft-

ware (Bio-Rad, Hercules, CA). After spot detection and back-
ground subtraction, gels were aligned and matched for the
quantitative determination of the spots.

Identification of Proteins with MALDI Tandem Mass 
Spectrometric Analysis and Database

For mass spectrometric analysis, the individual protein spots
were excised from a polyacrylamide gel, washed with doubly
deionized water, and destained after treating with ammonium
bicarbonate and acetonitrile. Trypsin solution (0.005 ug/μl in
25 mM ammonium bicarbonate) was added and samples were
digested at 37°C overnight. The next day they were analyzed by
the MALDI-TOF/TOF method. Proteins with the corresponding
peptide mass were identified using the NCBI search engine (http://
www.ncbi.nlm.nih.gov/sites/entrez/).

The mass spectrometric analysis was carried out using a
MALDI-TOF/TOF instrument (4700 Proteomics analyzer,
Applied Biosystems) with reflector positive ion mode. For MS
analysis, 700–4000 m/z mass range was used with 1000 shots per
spectrum. A maximum of 5 precursors per spot with minimum
signal/noise ratio of 50 were selected for data-dependent MS/MS
analysis. A 1-keV collision energy was used for collision-induced
dissociation (CID), and 1500 acquisitions were accumulated for
each MS/MS spectrum. All the analyses were performed using
default calibration, and the mass accuracy was calibrated to
within 0.1 Da using calibration standards (Applied Biosystems)
before each run.

Western Blot Analysis
To verify the identification procedure by MALDI-TOF/TOF,

one of the proteins detected by us for a Western blot analysis was
selected. Prohibitin was chosen, because it is known that its func-
tion is related to E2. One hundred and twenty micrograms of the
homogenate of each group of pooled ovaries was separated by
SDS-PAGE and then blotted onto polyvinylidene fluoride
(PVDF) membranes. The membranes were incubated with a
blocking solution containing 1:200 dilution of anti-prohibitin
(Santa Cruz Biotechnology, Inc., Santa Cruz, CA) and subse-
quently incubated with blocking solution containing 1:10,000
dilution of horseradish peroxidase-conjugated anti-rabbit

immunoglobulin (Ig) G secondary antibody (Santa Cruz Biotech-
nology Inc., Santa Cruz, CA). Detection was performed with
BeyoECL Plus system (Beyotime Biotechnology, Jiangsu, China).

Statistical Analysis
Data were represented as means ± standard deviation (SD)

(n = 8/group), and the statistical evaluations of weight, E2, and
BMD were performed by analysis of variance (ANOVA), with
subsequent Student–Newman–Keuls test using SPSS (13.0)
software. The partial correlation coefficients were used to iden-
tify the association between E2 and prohibitin expression. The
criterion for significance was set at of p < .05.

RESULTS

Body and Ovary Weight
To examine the effect of TCDD on body weight of Sprague-

Dawley rats, all animals were weighed every week during the
treatment. As shown in Figure 1, the 125-ng/kg group had a
significantly lower weight gain relative to control at age 32 wk,
and the significant differences continued until sacrifice at wk
34. There was also a statistically significant reduction in abso-
lute and relative ovary weight in all TCDD groups compared
with the control (Table 1).

Estradiol (E2)
The E2 levels in all three TCDD-treated groups were signif-

icantly lower than in the control group (Figure 2). Compared
with the 20-ng/kg TCDD-treated group, the E2 levels in the
50- and 125-ng/kg groups were markedly lower.

Bone Mineral Density (BMD)
There was no significant difference of femur bone density

between the control and the three TCDD groups (Figure 3).

2-DE and Image Acquisition
Following quantitative comparison of the gels obtained

from the ovary tissues of each of the 4 groups, 610 spots were
identified in the control group, 598 spots in the 20-ng/kg
group, 590 spots in the 50-ng/kg group, and 599 spots in the
125-ng/kg group. These spots were matched, normalized, and
quantified. Because differences cannot be detected visually,
only the 2D gel images of the control group and the highest
exposure group are shown in Figure 4. However, after
PDQuest image analysis of the 2D images, seven spots, which
showed a significant twofold change in the amount relative to
control, were selected for further analysis.

MALDI-TOF/TOF and Proteins Identification
The results of this identification procedure, such as the pI/Mw

(kD), accession number, and sequence coverage, are shown in
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Table 2. The following up-regulated proteins were identified:
selenium binding protein 2 (SBP2), glutathione S-transferse
mu type 3 (GSTM3), Lrpap 1 protein, NADPH, and peptidylpro-
lyl isomerase D. The levels of these upregulated proteins,
presented as relative intensity in the pooled gel spots, are
shown in Figure 5 for each exposure dose. Because of the pool-
ing prior to this identification, no standard deviations could be
calculated. Two downregulated proteins were identified
as prohibitin and N-ethylmaleimide-sensitive factor (NSF).
Figure 5 shows the relative intensity of these proteins.

Partial Correlation Analysis
Because prohibitin was identified among the changed pro-

teins, and because prohibitin is related to the serum E2 levels, a
partial correlation analysis was performed where the TCDD
dose is controlled. A positive correlation coefficient of 0.81
was noted between prohibin and E2 levels (Figure 6).

Detection of Prohibitin by Western Blot
To verify the identity of one of the proteins identified by

MALDI-TOF/TOF, the expression level of prohibitin was ana-
lyzed by Western blot. Prohibitin (molecular mass = 32.839 kD)
was detected and confirmed to be correctly identified in the
ovaries (Figure 7).

DISCUSSION
Although the body weights of all rats increased with age,

this was less pronounced in the TCDD treatment animals. The
125-ng/kg group had a significantly lower weight gain relative
to control from age 32 wk until wk 34. The present findings are
in agreement with a study on the effects of 0.0125, 0.05, or
0.2 μg/kg TCDD for 20 wk (Croutch et al., 2005). On the other
hand, B6C3F1 mice treated with 0, 1.5, or 150 ng/kg TCDD
showed no adverse effects in body weights or organ/body
weight ratios (Diliberto et al., 2001). In agreement with other

FIG. 1. Effects of chronic treatment with various doses of TCDD on body weight gain. Animals were administered orally 0, 20, 50, or 125 ng/kg TCDD for 29 wk.
Data are mean body weights of 8 animals per group. a, Significantly different from control (p < .05).
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TABLE 1 
Body Weight, Ovary Weight, and Relative Ovary Weight

Treatment
Body weight 

(g) at 6 wk old
Body weight (g) 
at sacrifice time

Ovary 
weight (g)

Relative ovary 
weight (g/kg)

Control 216.88 ± 13.87 384.00 ± 33.54 0.042 ± 0.005 0.109 ± 0.017
20 ng/kg/d 220.71 ± 24.23 365.43 ± 24.86 0.031 ± 0.006a,b 0.090 ± 0.023a,b

50 ng/kg/d 212.50 ± 12.54 359.13 ± 29.46 0.028 ± 0.006a,b 0.078 ± 0.013a

125 ng/kg/d 212.50 ± 10.34 337.44 ± 29.33a 0.019 ± 0.003a 0.060 ± 0.012a

Note. Data represent mean ± standard deviation (SD) for 8 rats/group.
aSignificantly different vs. control group.
bSignificantly different vs. the 125ng/kg/d group.
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TCDD-MEDIATED PROTEOMIC OVARIAN CHANGES 721

studies in mice and rats, we noted a decreased ovarian weight
(Johnson et al., 1997; Cummings et al., 1999), which is likely
due to a direct influence of TCDD on the ovary (Heiden et al.,
2006).

Lower E2 levels were found in the TCDD-treated groups.
Estradiol, an important endocrine hormone, is essential for the

regulation of growth, differentiation, and function of target
cells (Richards, 1980). Some investigators indicated that a
decrease is partly because of enhanced estrogen metabolism
(Pocar et al., 2003, 2005) and functional impairment of the
ovary or hypothalamic–pituitary–gonadal (HPG) axis (Heiden
et al., 2006). TCDD also inhibits the expression and activity of
aromatase mRNA (Dasmahapatra et al., 2000; Tang et al.,
2008), which is responsible for converting androgens to estro-
gens (Young et al., 1983).

FIG. 2. Effects of chronic treatment with varying TCDD doses on serum
estradiol (E2). Data are presented as mean ± standard deviation of 8 animals
per group. a, Significantly different from control (p < .05). b, Significantly
different from 20-ng/kg group (p < .05).
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FIG. 4. Coomassie blue-stained 2D gel images of pooled rat pooled ovaries proteome: (A) control, (B) 125 ng/kg. Mw, Molecular mass marker; IEF,
isoelectric focusing; SDS PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis. The numbers on the map are the codes of specific proteins indicated
by an arrow, which correspond to the numbers in Table 2 and Figure 5.
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FIG. 3. Influence of chronic treatment with TCDD on femur bone mineral
density (BMD). Data are presented as mean ± standard deviation of 8 rats per
group.
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Some studies suggest that TCDD retards sexual and skeletal
maturation (Ohyama et al., 2007; Fukuzawa et al., 2004), with the
latter including a decrease in BMD and a reduced bending break-
ing force and stiffness (Murtomaa et al., 2007). Bone changes are
sensitive endpoints of dioxin exposure, but high variability limits
their use as biomarkers (Murtomaa et al., 2007). TCDD exposure
did not change BMD significantly in our experiment. Marked
bone changes may need a higher TCDD dose in adult rats
(Miettinen et al., 2005). In our study it is possible the starting age
of treatment was too late to affect bone development.

Our study focused on the identification of the proteins
whose levels were affected after TCDD treatment. The upregu-
lated proteins identified were selenium binding protein 2,
glutathione S-transferase mu type 3, Lrpap 1 protein, NADPH,
and peptidylprolyl isomerase D. Prohibitin and N-ethylmaleimide-
sensitive factor proteins were expressed in lower amounts
compared with controls.

Selenium-binding protein 2 (SBP2), also known as 56-kD
acetaminophen-binding protein (Mattow et al., 2006), has
specific binding properties for selenium and APAP (N-acetyl-
p-aminophenol) (Lanfear et al., 1993). Our findings show that
SBP2 expression in the ovary was significantly higher in
TCDD-treated female rats. However, the precise mechanism
and function of SBP2 in the ovary are not known. Ishida et al.
(2002) postulated that SBP2 is concomitantly induced by
dioxin binding to AhR and by TCDD-induced oxidative
stress. Transition to reproductive senescence involves
changes in ovarian functions, and this process may be accel-
erated by TCDD (Franczak et al., 2006; Valdez & Petroff,
2004). Recent studies identified SBP2 as a crucial factor for
accelerated senescence (Cho et al., 2003); thus, increased
level of SBP2 in our study may be related to reproductive
senescence produced by TCDD.

The prohibitins Phb1 and Phb2 are highly conserved pro-
teins that are present in multiple cellular compartments
(Kasashima et al., 2006). Craig et al. (2007) showed that Phb is
expressed in all cells of the ovary. Initial investigations
focused on the role of Phb1 as an inhibitor of cell proliferation,
hence the original name prohibitin (Mishra et al., 2006). In ani-
mals and yeast, prohibitins were reported to play important
roles in cell cycle regulation, senescence, and steroid hormone
modulation (Mishra et al., 2006; Gamble et al., 2004; Kurtev
et al., 2004; Montano et al., 1999; Park et al., 2005; Kasashima
et al., 2006).

Phb functions as a transcriptional co-repressor for estrogen
receptor a (ERa) in vitro and in vivo, and depletion of Phb
enhanced the expression of estrogen receptor (ER) target
genes (He et al., 2008). In our study, the expression of Phb
was decreased in TCDD-treated groups. After controlling for
the TCDD dose variable, the coefficient of correlation
between estrogen and Phb levels was 0.81. It is postulated
that this TCDD-induced downregulation of Phb might
involve a compensatory or protective role via the reduction of
ER target genes expression and decrease of E2 concentration
observed.

GSTM3, one of the oxidative stress response genes, was
upregulated in humans with chloracne (McHale et al., 2007), in
waste incineration workers (Kim et al., 2004), and in animal
models (Shertzer et al., 1998) following TCDD exposure.
Our study identified the “glutathione S-transferase, mu type 3”
as an upregulated protein spot, the intensity of which in the
125-ng/kg/day group was around 2.5-fold higher than for the
control.

The intensity of Lrpap-1 (low-density lipoprotein-related
receptor-associated protein-1) was increased in the TCDD
treated groups. Lrpap-1 functions as a chaperone protein in the

TABLE 2 
Identification of Differentially Expressed Proteins Among Four Groups

Code
Accession number 

in NCBI Protein identification Exp. pI/Mw (kD) Theor. pI/Mw (kD) Sequence coverage

Upregulated
4513 EDL85767 Selenium binding protein 2 6.74/55.83 5.94/50.58 65%
6103 NP_112416 Glutathione S-transferase, mu type 3 7.75/27.80 6.84/25.68 74%
5416 AAH98947 Lrpap 1 protein 7.34/41.96 6.90/41.90 46%
4215 CAA59088 Carbonyl reductase (NADPH) 6.62/33.46 8.21/30.58 48%
5414 AAH19778 Peptidylprolyl isomerase D 

(cyclophilin D)
7.47/40.07 7.07/40.74 29%

Downregulated
2205 AAH72518 Prohibitin 5.92/32.84 5.57/29.82 57%
5816 AAD39485 N-Ethylmaleimide sensitive factor 7.06/82.56 6.55/82.65 17%

Note. Exp. pI/Mw (kD), experimental molecular mass and pI. Theor. pI/Mw (kD), theoretical molecular mass and pI. Theoretical masses and
pI were predicted by entering the sequence at ExPASy Molecular Biology Server (http://cn.expasy.org/tools/pi_tool.html).
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FIG. 5. Magnified 2-DE map of spots and quantitative comparison of 7 altered protein expressions among 4 groups. The volume of the spots was normalized
and quantified by PDQuest Software. Bar graphs represent the volume intensity of spots 4513, 6103, 5416, 4215, 5414, 220,5 and 5816. The upregulated proteins
include selenium binding protein 2 (4513), glutathione S-transferase (6103), Lrpap1 protein (5416), NADPH (4215), peptidylprolyl isomerase D (5414). Down-
egulated proteins are prohibitin (2205) and N-ethylmaleimide-sensitive factor (5816). (A) Control; (B) 20 ng/kg; (C) 50 ng/kg; (D) 125 ng/kg.
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transport of low-density lipoprotein-related receptor (Gonzalez
et al., 2002; Zhang et al., 2005). The Lrpap-1 gene is related to
aging, and the changed expression may result from the role of
TCDD in accelerating senescence.

N-Ethylmaleimide (NEM)-sensitive factor (NSF) is an
important part of the exocytic machinery and plays a critical
role in endothelial granule exocytosis (Yamakuchi et al.,
2008). NSF was decreased with increasing TCDD dose, and
in the 125-ng/kg group it was almost threefold lower than

the control. The xenobiotics TCDD, 2,3,4,7,8-pentachlorod-
ibenzofuran (PeCDF), and polychlorinated biphenyl (PCB)
126 induce oxidative stress in rats after chronic treatment,
and TCDD is the most potent among the congeners
(Hassoun et al., 2002). TCDD elevates H2O2 and other
biomarkers of oxidative stress (Senft et al., 2002; Shen et al.,
2005). The free radicals H2O2 and nitrous oxide (NO) inhibit
NSF expression, which may explain the downregulation of
NSF in our study. Cyclophilin D is upregulated by oxidative

FIG. 5. (Continued).
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stress (Juhaszova et al., 2008; Schneider, 2005) and was
found to be upregulated in our study. Data indicate that
TCDD-mediated oxidative stress may play a role in the ova-
ries of exposed rats.

In summary, our proteomic analysis of the rat ovary
revealed altered protein level expression following chronic
low-dose exposure to TCDD. Several proteins with higher up-
or downregulation, such as SBP2, GSTM3, NADPH, Lrpap 1
protein, cyclophilin D, prohibitin, and NSF, may yield clues to
the mechanisms underlying TCDD-mediated oxidative stress
on reproductive and endocrine functions.
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