3,523 research outputs found

    Constraints and Soliton Solutions for the KdV Hierarchy and AKNS Hierarchy

    Full text link
    It is well-known that the finite-gap solutions of the KdV equation can be generated by its recursion operator.We generalize the result to a special form of Lax pair, from which a method to constrain the integrable system to a lower-dimensional or fewer variable integrable system is proposed. A direct result is that the nn-soliton solutions of the KdV hierarchy can be completely depicted by a series of ordinary differential equations (ODEs), which may be gotten by a simple but unfamiliar Lax pair. Furthermore the AKNS hierarchy is constrained to a series of univariate integrable hierarchies. The key is a special form of Lax pair for the AKNS hierarchy. It is proved that under the constraints all equations of the AKNS hierarchy are linearizable.Comment: 12 pages, 0 figur

    Some Applications of the Extended Bendixson-Dulac Theorem

    Get PDF
    During the last years the authors have studied the number of limit cycles of several families of planar vector fields. The common tool has been the use of an extended version of the celebrated Bendixson-Dulac Theorem. The aim of this work is to present an unified approach of some of these results, together with their corresponding proofs. We also provide several applications.Comment: 19 pages, 3 figure

    Spectral analysis and a closest tree method for genetic sequences

    Get PDF
    We describe a new method for estimating the evolutionary tree linking a collection of species from their aligned four-state genetic sequences. This method, which can be adapted to provide a branch-and-bound algorithm, is statistically consistent provided the sequences have evolved according to a standard stochastic model of nucleotide mutation. Our approach exploits a recent group-theoretic description of this model

    Apolipoprotein AIV gene variant S347 is associated with increased risk of coronary heart disease and lower plasma apolipoprotein AIV levels

    Get PDF
    The impact of common variants in the apolipoprotein gene cluster (APOC3-A4-A5) on prospective coronary heart disease (CHD) risk was examined in healthy UK men. Of the 2808 men followed over 9 years, 187 had a clinically defined CHD event. Examination of 9 single nucleotide polymorphisms (SNPs) in this group revealed that homozygotes for APOA4 S347 had significantly increased risk of CHD [hazard ratio (HR) of 2.07 (95%CI 1.04 to 4.12)], whereas men homozygous for APOC3 1100T were protected [HR 0.28 (95%CI 0.09 to 0.87)]. In stepwise multiple regression analysis, after entering all the variants and adjusting for established risk factors APOA4 T347S alone remained in the model. Using all nine SNPs, the highest risk-estimate haplotypes carried APOA4 S347 and rare alleles of the two flanking intergenic markers. The protective effect of APOC3 1100T could be explained by negative linkage disequilibrium with these alleles. To determine the association of APOA4 T347S with apoAIV levels, the relationship was examined in 1600 healthy young European men and women. S347 homozygotes had significantly lower apoAIV plasma levels (13.64±0.59 mg/dL) compared with carriers of the T347 allele (14.90±0.12 mg/dL) (P=0.035). These results demonstrate that genetic variation in and around APOA4, independent of the effects of triglyceride, is associated with risk of CHD and apoAIV levels, supporting an antiatherogenic role for apoAIV

    Spectral Statistics in the Quantized Cardioid Billiard

    Full text link
    The spectral statistics in the strongly chaotic cardioid billiard are studied. The analysis is based on the first 11000 quantal energy levels for odd and even symmetry respectively. It is found that the level-spacing distribution is in good agreement with the GOE distribution of random-matrix theory. In case of the number variance and rigidity we observe agreement with the random-matrix model for short-range correlations only, whereas for long-range correlations both statistics saturate in agreement with semiclassical expectations. Furthermore the conjecture that for classically chaotic systems the normalized mode fluctuations have a universal Gaussian distribution with unit variance is tested and found to be in very good agreement for both symmetry classes. By means of the Gutzwiller trace formula the trace of the cosine-modulated heat kernel is studied. Since the billiard boundary is focusing there are conjugate points giving rise to zeros at the locations of the periodic orbits instead of exclusively Gaussian peaks.Comment: 20 pages, uu-encoded ps.Z-fil

    Casimir force on a piston

    Full text link
    We consider a massless scalar field obeying Dirichlet boundary conditions on the walls of a two-dimensional L x b rectangular box, divided by a movable partition (piston) into two compartments of dimensions a x b and (L-a) x b. We compute the Casimir force on the piston in the limit L -> infinity. Regardless of the value of a/b, the piston is attracted to the nearest end of the box. Asymptotic expressions for the Casimir force on the piston are derived for a << b and a >> b.Comment: 10 pages, 1 figure. Final version, accepted for publication in Phys. Rev.

    Drinfeld Twists and Algebraic Bethe Ansatz of the Supersymmetric t-J Model

    Full text link
    We construct the Drinfeld twists (factorizing FF-matrices) for the supersymmetric t-J model. Working in the basis provided by the FF-matrix (i.e. the so-called FF-basis), we obtain completely symmetric representations of the monodromy matrix and the pseudo-particle creation operators of the model. These enable us to resolve the hierarchy of the nested Bethe vectors for the gl(21)gl(2|1) invariant t-J model.Comment: 23 pages, no figure, Latex file, minor misprints are correcte

    Recurrence and higher ergodic properties for quenched random Lorentz tubes in dimension bigger than two

    Full text link
    We consider the billiard dynamics in a non-compact set of R^d that is constructed as a bi-infinite chain of translated copies of the same d-dimensional polytope. A random configuration of semi-dispersing scatterers is placed in each copy. The ensemble of dynamical systems thus defined, one for each global realization of the scatterers, is called `quenched random Lorentz tube'. Under some fairly general conditions, we prove that every system in the ensemble is hyperbolic and almost every system is recurrent, ergodic, and enjoys some higher chaotic properties.Comment: Final version for J. Stat. Phys., 18 pages, 4 figure

    Quantum criticality, particle-hole symmetry, and duality of the plateau-insulator transition in the quantum Hall regime

    Full text link
    We report new experimental data on the plateau-insulator transition in the quantum Hall regime, taken from a low mobility InGaAs/InP heterostructure. By employing the fundamental symmetries of the quantum transport problem we are able to disentangle the universal quantum critical aspects of the magnetoresistance data (critical indices and scaling functions) and the sample dependent aspects due to macroscopic inhomogeneities. Our new results and methodology indicate that the previously established experimental value for the critical index (kappa = 0.42) resulted from an admixture of both universal and sample dependent behavior. A novel, non-Fermi liquid value is found (kappa = 0.57) along with the leading corrections to scaling. The statement of self-duality under the Chern Simons flux attachment transformation is verified.Comment: 4 pages, 2 figure
    corecore