716 research outputs found

    Efficient template attacks

    Get PDF
    This is the accepted manuscript version. The final published version is available from http://link.springer.com/chapter/10.1007/978-3-319-08302-5_17.Template attacks remain a powerful side-channel technique to eavesdrop on tamper-resistant hardware. They model the probability distribution of leaking signals and noise to guide a search for secret data values. In practice, several numerical obstacles can arise when implementing such attacks with multivariate normal distributions. We propose efficient methods to avoid these. We also demonstrate how to achieve significant performance improvements, both in terms of information extracted and computational cost, by pooling covariance estimates across all data values. We provide a detailed and systematic overview of many different options for implementing such attacks. Our experimental evaluation of all these methods based on measuring the supply current of a byte-load instruction executed in an unprotected 8-bit microcontroller leads to practical guidance for choosing an attack algorithm.Omar Choudary is a recipient of the Google Europe Fellowship in Mobile Security, and this research is supported in part by this Google Fellowship

    Outcome of Diagnostic Tests Using Samples from Patients with Culture-Proven Human Monocytic Ehrlichiosis: Implications for Surveillance

    Get PDF
    We describe the concordance among results from various laboratory tests using samples derived from nine culture-proven cases of human monocytic ehrlichiosis (HME) caused by Ehrlichia chaffeensis. A class-specific indirect immunofluorescence assay for immunoglobulin M (IgM) and IgG, using E. chaffeensis antigen, identified 44 and 33% of the isolation-confirmed HME patients on the basis of samples obtained at initial clinical presentation, respectively; detection of morulae in blood smears was similarly insensitive (22% positive). PCR amplifications of ehrlichial DNA targeting the 16S rRNA gene, the variable-length PCR target gene, and the groESL operon were positive for whole blood specimens obtained from all patients at initial presentation. As most case definitions of HME require a serologic response with compatible illness for a categorization of even probable disease, PCR would have been required to confirm the diagnosis of HME in all nine of these patients without the submission of a convalescent-phase serum sample. These data suggest that many, if not most, cases of HME in patients who present early in the course of the disease may be missed and underscore the limitations of serologically based surveillance systems

    Insulin but not phorbol ester treatment increases phosphorylation of vinculin by protein kinase C in BC3H-1 myocytes

    Get PDF
    AbstractInsulin was found to increase protein kinase C activity in BC3H-1 myocytes as determined by in vitro phosphorylation of both a lysine-rich histone fraction (histone III-S) and vinculin. TPA treatment for 20 min or 18 h provoked an apparent loss of histone-directed but not vinculin-directed phosphorylation by cytosolic C-kinase. Thus, chronic TPA-induced ‘desensitization’ or ‘depletion’ of cellular protein kinase C is more apparent than real, and is not a valid means for evaluating the role of C-kinase in hormone action

    Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases.

    Get PDF
    The gold standard for a definitive diagnosis of Parkinson disease (PD) is the pathologic finding of aggregated α-synuclein into Lewy bodies and for Alzheimer disease (AD) aggregated amyloid into plaques and hyperphosphorylated tau into tangles. Implicit in this clinicopathologic-based nosology is the assumption that pathologic protein aggregation at autopsy reflects pathogenesis at disease onset. While these aggregates may in exceptional cases be on a causal pathway in humans (e.g., aggregated α-synuclein in SNCA gene multiplication or aggregated β-amyloid in APP mutations), their near universality at postmortem in sporadic PD and AD suggests they may alternatively represent common outcomes from upstream mechanisms or compensatory responses to cellular stress in order to delay cell death. These 3 conceptual frameworks of protein aggregation (pathogenic, epiphenomenon, protective) are difficult to resolve because of the inability to probe brain tissue in real time. Whereas animal models, in which neither PD nor AD occur in natural states, consistently support a pathogenic role of protein aggregation, indirect evidence from human studies does not. We hypothesize that (1) current biomarkers of protein aggregates may be relevant to common pathology but not to subgroup pathogenesis and (2) disease-modifying treatments targeting oligomers or fibrils might be futile or deleterious because these proteins are epiphenomena or protective in the human brain under molecular stress. Future precision medicine efforts for molecular targeting of neurodegenerative diseases may require analyses not anchored on current clinicopathologic criteria but instead on biological signals generated from large deeply phenotyped aging populations or from smaller but well-defined genetic-molecular cohorts

    Non–Destructive Imaging of Phytosulfokine Trafficking Using a Fiber–Optic Fluorescence Microscope

    Get PDF
    Plants secrete peptide ligands and use receptor signaling to respond to stress and control development. Understanding the signaling mechanisms and associated molecular trafficking is key to improving plant health and productivity for food, fiber and energy applications. However, one of the challenges to elucidating communication pathways in plants is to study the trafficking of molecules and signals iteratively and non-destructively. This study focuses on using fiber-optic fluorescence microscopy to image live plants iteratively and non-destructively after delivering both labeled and unlabeled phytosulfokine (PSK) into the plant. PSK is a sulfated peptide hormone involved in the regulation of plant cell division and growth via specific receptors, PSKRs. It also plays a role in regulating how plants are able to tolerate stress conditions. The microscope provides two-color (FITC/TRITC) optics and provides high-resolution (3–5 µm) epifluorescence micrographs via a 1-m coherent imaging fiber and a GRIN objective lens. To obtain high-quality images, the fiber was mounted either to a conventional upright microscope body equipped with a leaf compressor, or to a leaf clip with 5-axis positioning (X–Y–Z plus pitch and yaw) mounted on an extensible arm. PSK and TAMRA-labelled PSK were delivered into the roots of various Arabidopsis thaliana genotypes (wt; receptor-deficient: pskr1/pskr2; and tagged receptor overproducing: PSKR1‑GFP), and their movement in roots and leaves was tracked with the fiber-optic fluorescence microscope. Peptide trafficking was successfully observed in live plants non- destructively, confirming that PSK is mobile in both wt and receptor-deficient plants. Preliminary results suggest that the level of receptor PSKR1 may change in response to PSK, and that levels of PSKR1, PSKR2 or both may impact the trafficking of PSK. Understanding how PSK is trafficked in plants will offer insights into how we can improve plants health and productivity

    Basic Science in Movement Disorders: Fueling the Engine of Translation into Clinical Practice

    Get PDF
    \ua9 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. Basic Science is crucial for the advancement of clinical care for Movement Disorders. Here, we provide brief updates on how basic science is important for understanding disease mechanisms, disease prevention, disease diagnosis, development of novel therapies and to establish the basis for personalized medicine. We conclude the viewpoint by a call to action to further improve interactions between clinician and basic scientists. \ua9 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    Efficient Entropy Estimation for Mutual Information Analysis Using B-Splines

    No full text
    International audienceThe Correlation Power Analysis (CPA) is probably the most used side-channel attack because it seems to fit the power model of most standard CMOS devices and is very efficiently computed. However, the Pearson correlation coefficient used in the CPA measures only linear statistical dependences where the Mutual Information (MI) takes into account both linear and nonlinear dependences. Even if there can be simultaneously large correlation coefficients quantified by the correlation coefficient and weak dependences quantified by the MI, we can expect to get a more profound understanding about interactions from an MI Analysis (MIA). We study methods that improve the non-parametric Probability Density Functions (PDF) in the estimation of the entropies and, in particular, the use of B-spline basis functions as pdf estimators. Our results indicate an improvement of two fold in the number of required samples compared to a classic MI estimation. The B-spline smoothing technique can also be applied to the rencently introduced Cramér-von-Mises test
    • …
    corecore