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Insulin was found to increase protein kinase C activity in BC3H-1 myocytes as determined by in vitro phos- 
phorylation of both a lysine-rich histone fraction (histone III-S) and vinculin. TPA treatment for 20 min 
or 18 h provoked an apparent loss of histone-directed but not vinculin-directed phosphorylation by cytosol- 
ic C-kinase. Thus, chronic TPA-induced ‘desensitization’ or ‘depletion’ of cellular protein kinase C is more 

apparent than real, and is not a valid means for evaluating the role of C-kinase in hormone action. 
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1. INTRODUCTION 

We have reported that insulin increases diacyl- 
glycerol content in BC3H-1 myocytes [ 1,2], and 
this is associated with increases in C-kinase- 
mediated phosphorylation activity in cytosol and 
membrane fractions toward histone III-S [3]. In 
contrast, C-kinase-mediated phosphorylation ac- 
tivity toward histone Hl cleavage peptide is not 
altered by insulin treatment and insulin effects on 
ribosomal protein S6 phosphorylation are still evi- 
dent after 18-h TPA treatment, which provokes a 
loss in C-kinase-mediated histone III-S phospho- 
rylation and immunoprecipitable C-kinase [4]. 

Such ‘desensitization’ or ‘depletion’ of cellular 
protein kinase C has been attributed to proteolytic 
loss of C-kinase [5,6], but Cachet et al. [7] have 
recently found that acute TPA treatment of several 
cell types causes a loss of C-kinase-mediated phos- 
phorylation of histone, but not vinculin and 
several other substrates of C-kinase. Since acute 
TPA treatment may alter substrate and antibody 
recognition by C-kinase, the loss of C-kinase ac- 
tivity observed following chronic TPA treatment, 
which has been extensively utilized to evaluate the 
role of protein kinase C in hormone action, may be 
more apparent than real. These considerations, 
prompted us to compare insulin and chronic TPA 
effects on C-kinase activity in myocytes, using 
both vinculin and histone III-S as substrates. 

Correspondence address: D.R. Cooper, Research Ser- 
vice (l!l), James A. Haley Administration Hospital, 
13000 N. Bruce B. Downs Blvd., Tampa, FL 33612, 
USA 

2. MATERIALS AND METHODS 

2.1. Materials 

Abbreviations: TPA, 12-0-tetradecanoyl phorbol-13- We purchased PS, histone (type III-S), PMSF, 
acetate; PMSF, phenylmethylsulfonyl fluoride; BSA, ATP, TPA and BSA (RIA grade) from Sigma; 
bovine serum albumin; PS, phosphatidylserine [y-‘*P]ATP (600 mCi/mmol) from ICN Radio- 
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chemicals; DEAE-Sephacel from Pharmacia; and 
porcine zinc insulin (25.7 IU/mg) from Elanco 
Products. Vinculin was purified from chicken giz- 
zards according to Feramisco and Burridge [8] 
through the DEAE-cellulose chromatography step. 
Purity was evaluated using slab gel electrophoresis. 

2.2. Cell culture and fractionation 
BC3H-1 myocytes were cultured to confluence 

[1,2] in T-25 flasks containing Dulbecco’s 
modified Eagles medium supplemented with 20% 
(v/v) fetal calf serum, and fed with 25 mM glucose 
for 18 h prior to experiments. TPA (in dimethyl 
sulfoxide, final vol. = O.OWo) was added in some 
experiments with glucose. Cells were rinsed and 
preincubated for 15 min at 37°C in Dulbecco’s 
phosphate-buffered saline (DPBS) containing 
1 mg/ml BSA, and then incubated for 20 min with 
or without insulin or TPA (as described). Reac- 
tions were stopped by decanting media and rinsing 
monolayers twice with ice-cold DPBS. Cells were 
scraped and centrifuged at 1000 x g for 3 min. Cell 
pellets were resuspended in 0.5 ml of buffer A 
(20 mM Tris-HCI, pH 7.5, 0.25 M sucrose, 
1.2 mM EGTA, 0.1 mM PMSF) and sonicated for 
30 s at 50% output in a Heat Systems ultra- 
sonicator. Sonicates were centrifuged at 
105000 x g for 30 min in a Beckman TL-100 ultra- 
centrifuge. Supernates (cytosol) were decanted and 
the pellets were resuspended in buffer B (20 mM 
Tris-HCI, pH 7.5, 0.25 mM sucrose, 5 mM 
EGTA, 2 mM EDTA, 1% Triton X-100, 0.1 mM 
PMSF). After 20 min at 4”C, the solubilized mem- 
brane fractions were centrifuged as described 
above. 

To partially purify C-kinase, cytosolic and mem- 
brane fractions containing 2OOpg protein were 
chromatographed on 0.5 ml DEAE-Sephacel col- 
umns which had been equilibrated in 2 column 
volumes of buffer C (20 mM Tris-HCl, pH 7.4, 
50 mM ,&mercaptoethanol, 1 mM EGTA and 
1 mM EDTA). Columns were eluted stepwise with 
2 column volumes (1 ml) of buffer C containing 0, 
0.05, 0.15, and 0.5 M KCl. Routinely, 75010 of the 
vinculin-directed C-kinase activity and 9OYo of the 
histone-directed C-kinase activity eluted with 
0.15 M KCI. 1 ml fractions were collected and 
80 pl aliquots were analyzed for C-kinase activity. 
Phospholipid and Ca*+-dependent protein kinase 
activity was assayed as described [3]. The complete 

reaction mixtures (0.25 ml vol) contained 5 pmol 
Tris-HCl, pH 7.5, 1.25 pmol Mg-acetate, 2.5 nmol 
of [Y-~*P]ATP (10-20 x 104 cpm/nmol), 1Org 
PS, 125 nmol of CaClz (in excess of chelator con- 
centrations) and 50 pg histone III-S (by weight) or 
6Opg vinculin (by dye-binding protein assay). 
Ca*+/PS-independent kinase activity was deter- 
mined by incubation of samples in the absence of 
PS and Ca*+, and in the presence of 125 nmol 
EGTA. Reactions were initiated by enzyme addi- 
tion and terminated after 3 min by adding 2 ml of 
25% (w/v) trichloroacetic acid. Precipitates were 
collected on nitrocellulose filters (0.45 pm, Milli- 
pore) and counted for radioactivity. 

. 

3. RESULTS 

The Ca*+- and phospholipid-dependence of C- 
kinase-mediated vinculin phosphorylation is 
shown in table 1. Maximal phosphorylation re- 
quired the simultaneous presence of both PS and 
Ca*+, and neither alone affected phosphorylating 
activity. The DEAE-cellulose column elution pro- 
file for C-kinase-mediated vinculin phosphoryla- 
tion activity (not shown) was similar to that 
reported [3] for histone III-S phosphorylation. 

The effect of insulin treatment on cytosolic and 
membrane-associated C-kinase activity was deter- 
mined by assaying DEAE-Sephacel column frac- 
tions simultaneously with vinculin and histone 
III-S substrates. Histone-directed C-kinase activity 
in cytosolic and membrane fractions was increased 
2-fold after insulin treatment. Vinculin-directed C- 

Table 1 

Ca’+ and phospholipid dependence of vinculin phos- 
phorylation by C-kinase 

Addition pm01 32P/min per fraction 

PS + Ca2+ 21.72 f 1.69 
Ca2+ 7.26 f 2.88 
PS, EGTA 10.84 f 0.56 
EGTA 9.02 f 0.58 

Cytosolic extracts from insulin treated (200 nM, 20 min) 
were chromatographed on DEAE-Sephacel columns as 
described in section 2. C-kinase activity was assayed in 
fractions eluting with 0.15 M KC1 with additions as 
indicated: 40 /rg/ml PS, 0.5 mM Ca2+, or 0.5 mM 
EGTA, 60,ug vinculin. Values represent means f SE of 

incubations from 3 experiments 
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kinase activity was stimulated nearly 4-fold by in- 
sulin treatment, but this effect was only apparent 
in the cytosolic fraction (table 2). 

Previous reports have shown that histone- 
directed and immunoprecipitable C-kinase is defi- 
cient or no longer detected following chronic TPA 
treatment of 3T3-Ll cells [6], BC3H-1 myocytes 

[5] and Swiss 3T3 cells [9]. Accordingly, when 
myocytes were treated either for 20 min or 18 h 
with 1 pM TPA, histone-directed C-kinase activity 
was usually no longer apparent in DEAE-Sepha- 
ccl-purified cytosolic extracts and markedly di- 
minished in membrane extracts (table 3), 
confirming the previously’ reported observation. 

Table 2 

Effect of insulin treatment on C-kinase-mediated phosphorylation of 
vinculin and histone III-S 

Substrate Subcellular pm01 32P/min per fraction 
fraction 

Control Insulin 

Vinculin 

treatment 

cytosol (n = 3) 2.18 f 0.85 8.31 + lJXa 
membrane (n = 3) 3.54 + 1.62 3.84 f 0.33 

Histone III-S cytosol (n = 5) 21.10 + 0.57 44.69 f 5.25b 
membrane (n = 5) 5.83 f 0.63 12.17 + 0.87’ 

BC3H-1 myocytes were treated with insulin (200 nM) for 20 min. 
Cytosolic and membrane extracts (200 pg protein) were 
chromatographed on DEAE-Sephacel and the (C-kinase-rich) fraction 
was assayed as described in section 2. Activity is expressed as pmol of 
PS and Ca2+-dependent phosphorylation of vinculin (60 pg) or 
histone III-S (50pg)/min per fraction of DEAE-Sephacel eluate. Data 
shown are means f SD of 3 or 5 separate experiments as indicated 

Table 3 

Effect of TPA treatment on C-kinase-mediated phosphorylation of 
histone III-S and vinculin in BC3H-1 myocytes 

Addition pmol 32P transferredimin per fraction 

Histone III-S 

Cytosol Membrane 

Vinculin 

Cytosol Membrane 

Control 18.4 65.0 1.91 3.76 
TPA (20 min) 0 4.25 1.93 0.73 
TPA (18 h) 0 5.95 2.12 0 

Myocytes were treated for 20 min or 18 h with 1 pM TPA. DEAE- 
eluates of the 0.15 M KC1 fraction from cytosolic and membrane 
extracts were assayed for C-kinase activity as described in section 2. 
Activity is expressed as pmol of PS and Ca2+-dependent 
phosphorylation of histone III-S (50 /rg) or vinculin (60 pg)/min per 
fraction. Data are representative of an experiment which was repeated 

3 times 
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However, residual histone-phosphorylating activi- 
ty always remained detectable in membrane ex- 
tracts and occasionally in cytosolic extracts (not 
shown), even following 16 pM TPA treatment for 
18 h. Furthermore, in contrast to the loss of 
histone III-S phosphorylation in cytosolic extracts 
after 20 min or 18 h of 1 pM TPA treatment, 
cytosolic vinculin-directed C-kinase activity was 
not depleted or desensitized and remained fully ac- 
tive (table 3). On the other hand, membrane- 
associated vinculin-phosphorylating activity was 
diminished following TPA treatment. 

4. DISCUSSION 

Our findings demonstrate that both vinculin and 
histone are substrates for C-kinase in the BC3H-1 
myocytes. The requirement for both PS and Ca2+ 
suggests that C-kinase rather than protease- 
activated kinase II [lo] is responsible for vinculin 
phosphorylation. Further, when myocytes were 
treated with insulin, increased phosphorylation of 
both substrates was apparent in C-kinase assays 
using cytosolic extracts. The reason for the dif- 
ference in effects of insulin on vinculin and histone 
III-S phosphorylation by membrane-associated C- 
kinase is not apparent. 

Of further interest, after 20-min or 18-h TPA- 
treatment, histone III-S was no longer or poorly 
phosphorylated by cytosolic C-kinase, but vinculin 
phosphorylation was virtually unchanged in the 
cytosol. (It is unclear why vinculin phosphorylation 
diminished in the membrane fraction with TPA 
treatment.) Thus, despite previous suggestions to 
the contrary [4], C-kinase activity is still present in 
TPA-treated myocytes, albeit in an altered form 
with respect to substrate and antibody recognition. 

After TPA treatment, the failure of C-kinase to 
recognize histone III-S as a substrate or to be 
recognized as a ligand for antibody binding [4], 
may be indicative of an altered catalytic state of 
the enzyme as has been suggested [7], or may 
reflect different forms of the enzyme which may 
selectively phosphorylate different substrates. 
Several forms of C-kinase activity have now been 
described as products of different genes or dif- 
ferently processed mRNAs [l l-141. Whatever the 
explanation, our results and those of Cachet et al. 

[7] emphasize the fact that C-kinase cannot be con- 
sidered to be absent or depleted in ‘TPA-desensi- 
tized’ cells, regardless of apparent decreases in 
histone phosphorylation and immunoprecipitable 
C-kinase activity. As a corollary, continued hor- 
monal actions in TPA-desensitized cells cannot be 
taken as definitive evidence that the C-kinase 
system is not involved in these actions (e.g [5,9]). 

The present results also serve to emphasize other 
points in interpreting C-kinase data. First, hor- 
monal effects on the C-kinase system may be 
similar in some respects to those of TPA and other 
tumor promoters, but patterns of C-kinase activa- 
tion, subcellular distribution, and ultimately 
phosphorylation effects on various substrates may 
be considerably different when C-kinase is ac- 
tivated by endogenously produced diacylglycerols 
versus unphysiological phorbol esters [15-l 71. 
Thus, changes observed with TPA should not serve 
as the absolute criterion to determine wheter the C- 
kinase system has been activated by physiological 
agonists. Second, the C-kinase system, through 
variations in substrate recognition or variable ac- 
tivation of several forms of C-kinase [18], in addi- 
tion to variations in subcellular distribution, may 
provide greater flexibility for biological expression 
than has been appreciated. 

In summary, the present findings provide fur- 
ther support for the hypothesis that insulin ac- 
tivates the C-kinase system. This activation by 
insulin is decidedly different from that provoked 
by TPA. The divergent changes in substrate- 
specific C-kinase activity observed presently are 
best explained by postulating that agonists may 
alter substrate recognition, or activate different 
forms of C-kinase. Our results also indicate that 
TPA desensitization does not cause a full loss of all 
forms or all activities of C-kinase. These caveats 
emphasize the need for caution in evaluating 
changes in the C-kinase system. 
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