156 research outputs found

    A precise modeling of Phoebe's rotation

    Full text link
    Although the rotation of some Saturn's satellites in spin-orbit has already been studied by several authors, this is not the case of the rotation of Phoebe, which has the particularity of being non resonant. The purpose of the paper is to determine for the first time and with precision its precession-nutation motion. We adopt an Hamiltonian formalism of the motion of rotation of rigid celestial body set up by Kinoshita (1977) based on Andoyer variables and canonical equations. First we calculate Phoebe's obliquity at J2000,0 from available astronomical data as well as the gravitational perturbation due to Saturn on Phoebe rotational motion. Then we carry out a numerical integration and we compare our results for the precession rate and the nutation coefficients with pure analytical model. Our results for Phoebe obliquity (23{\deg}95) and Phoebe precession rate (5580".65/cy) are very close to the respective values for the Earth. Moreover the amplitudes of the nutations (26" peak to peak for the nutaton in longitude and 8" for the nutation in obliquity) are of the same order as the respective amplitudes for the Earth. We give complete tables of nutation, obtained from a FFT analysis starting from the numerical signals. We show that a pure analytical model of the nutation is not accurate due to the fact that Phoebe orbital elements e, M and Ls are far from having a simple linear behaviour. The precession and nutation of Phoebe have been calculated for the first time in this paper. We should keep on the study in the future by studying the additional gravitational effects of the Sun, of the large satellites as Titan, as well as Saturn dynamical ellipticity.Comment: 11 pages,15 figures, accepted for publication in A&

    How Well Do We Know the Orbits of the Outer Planets?

    Full text link
    This paper deals with the problem of astrometric determination of the orbital elements of the outer planets, in particular by assessing the ability of astrometric observations to detect perturbations of the sort expected from the Pioneer effect or other small perturbations to gravity. We also show that while using simplified models of the dynamics can lead to some insights, one must be careful to not over-simplify the issues involved lest one be misled by the analysis onto false paths. Specifically, we show that the current ephemeris of Pluto does not preclude the existence of the Pioneer effect. We show that the orbit of Pluto is simply not well enough characterized at present to make such an assertion. A number of misunderstandings related to these topics have now propagated through the literature and have been used as a basis for drawing conclusions about the dynamics of the solar system. Thus, the objective of this paper is to address these issues. Finally, we offer some comments dealing with the complex topic of model selection and comparison.Comment: Accepted for publication in the Ap

    About the various contributions in Venus rotation rate and LOD

    Full text link
    % context heading (optional) {Thanks to the Venus Express Mission, new data on the properties of Venus could be obtained in particular concerning its rotation.} % aims heading (mandatory) {In view of these upcoming results, the purpose of this paper is to determine and compare the major physical processes influencing the rotation of Venus, and more particularly the angular rotation rate.} % methods heading (mandatory) {Applying models already used for the Earth, the effect of the triaxiality of a rigid Venus on its period of rotation are computed. Then the variations of Venus rotation caused by the elasticity, the atmosphere and the core of the planet are evaluated.} % results heading (mandatory) {Although the largest irregularities of the rotation rate of the Earth at short time scales are caused by its atmosphere and elastic deformations, we show that the Venus ones are dominated by the tidal torque exerted by the Sun on its solid body. Indeed, as Venus has a slow rotation, these effects have a large amplitude of 2 minutes of time (mn). These variations of the rotation rate are larger than the one induced by atmospheric wind variations that can reach 25-50 seconds of time (s), depending on the simulation used. The variations due to the core effects which vary with its size between 3 and 20s are smaller. Compared to these effects, the influence of the elastic deformation cause by the zonal tidal potential is negligible.} % conclusions heading (optional), leave it empty if necessary {As the variations of the rotation of Venus reported here are of the order 3mn peak to peak, they should influence past, present and future observations providing further constraints on the planet internal structure and atmosphere.}Comment: 12 pages, 10 figures, Accepted in A&

    On the anomalous secular increase of the eccentricity of the orbit of the Moon

    Full text link
    A recent analysis of a Lunar Laser Ranging (LLR) data record spanning 38.7 yr revealed an anomalous increase of the eccentricity of the lunar orbit amounting to de/dt_meas = (9 +/- 3) 10^-12 yr^-1. The present-day models of the dissipative phenomena occurring in the interiors of both the Earth and the Moon are not able to explain it. We examine several dynamical effects, not modeled in the data analysis, in the framework of long-range modified models of gravity and of the standard Newtonian/Einsteinian paradigm. It turns out that none of them can accommodate de/dt_meas. Many of them do not even induce long-term changes in e; other models do, instead, yield such an effect, but the resulting magnitudes are in disagreement with de/dt_meas. In particular, the general relativistic gravitomagnetic acceleration of the Moon due to the Earth's angular momentum has the right order of magnitude, but the resulting Lense-Thirring secular effect for the eccentricity vanishes. A potentially viable Newtonian candidate would be a trans-Plutonian massive object (Planet X/Nemesis/Tyche) since it, actually, would affect e with a non-vanishing long-term variation. On the other hand, the values for the physical and orbital parameters of such a hypothetical body required to obtain the right order of magnitude for de/dt are completely unrealistic. Moreover, they are in neat disagreement with both the most recent theoretical scenarios envisaging the existence of a distant, planetary-sized body and with the model-independent constraints on them dynamically inferred from planetary motions. Thus, the issue of finding a satisfactorily explanation for the anomalous behavior of the Moon's eccentricity remains open.Comment: LaTex2e, 8 pages, 1 table, 1 figure. Matching the version at press in Monthly Notices of the Royal Astronomical Society (MNRAS

    Integral field spectroscopy of selected areas of the Bright Bar and Orion-S cloud in the Orion Nebula

    Full text link
    We present integral field spectroscopy of two selected zones in the Orion Nebula obtained with the Potsdam Multi-Aperture Spectrophotometer (PMAS), covering the optical spectral range from 3500 to 7200 A and with a spatial resolution of 1". The observed zones are located on the prominent Bright Bar and on the brightest area at the northeast of the Orion South cloud, both containing remarkable ionization fronts. We obtain maps of emission line fluxes and ratios, electron density and temperatures, and chemical abundances. We study the ionization structure and morphology of both fields, which ionization fronts show different inclination angles with respect to the plane of the sky. We find that the maps of electron density, O+/H+ and O/H ratios show a rather similar structure. We interpret this as produced by the strong dependence on density of the [OII] lines used to derive the O+ abundance, and that our nominal values of electron density-derived from the [SII] line ratio-may be slightly higher than the appropriate value for the O+ zone. We measure the faint recombination lines of OII in the field at the northeast of the Orion South cloud allowing us to explore the so-called abundance discrepancy problem. We find a rather constant abundance discrepancy across the field and a mean value similar to that determined in other areas of the Orion Nebula, indicating that the particular physical conditions of this ionization front do not contribute to this discrepancy.Comment: 15 pages, 10 figures. Accepted for publication in MNRA

    Relativistic Celestial Mechanics with PPN Parameters

    Get PDF
    Starting from the global parametrized post-Newtonian (PPN) reference system with two PPN parameters γ\gamma and β\beta we consider a space-bounded subsystem of matter and construct a local reference system for that subsystem in which the influence of external masses reduces to tidal effects. Both the metric tensor of the local PPN reference system in the first post-Newtonian approximation as well as the coordinate transformations between the global PPN reference system and the local one are constructed in explicit form. The terms proportional to η=4βγ3\eta=4\beta-\gamma-3 reflecting a violation of the equivalence principle are discussed in detail. We suggest an empirical definition of multipole moments which are intended to play the same role in PPN celestial mechanics as the Blanchet-Damour moments in General Relativity. Starting with the metric tensor in the local PPN reference system we derive translational equations of motion of a test particle in that system. The translational and rotational equations of motion for center of mass and spin of each of NN extended massive bodies possessing arbitrary multipole structure are derived. As an application of the general equations of motion a monopole-spin dipole model is considered and the known PPN equations of motion of mass monopoles with spins are rederived.Comment: 71 page

    The field high-amplitude SX Phe variable BL Cam: results from a multisite photometric campaign. II. Evidence of a binary - possibly triple - system

    Full text link
    Short-period high-amplitude pulsating stars of Population I (δ\delta Sct stars) and II (SX Phe variables) exist in the lower part of the classical (Cepheid) instability strip. Most of them have very simple pulsational behaviours, only one or two radial modes being excited. Nevertheless, BL Cam is a unique object among them, being an extreme metal-deficient field high-amplitude SX Phe variable with a large number of frequencies. Based on a frequency analysis, a pulsational interpretation was previously given. aims heading (mandatory) We attempt to interpret the long-term behaviour of the residuals that were not taken into account in the previous Observed-Calculated (O-C) short-term analyses. methods heading (mandatory) An investigation of the O-C times has been carried out, using a data set based on the previous published times of light maxima, largely enriched by those obtained during an intensive multisite photometric campaign of BL Cam lasting several months. results heading (mandatory) In addition to a positive (161 ±\pm 3) x 109^{-9} yr1^{-1} secular relative increase in the main pulsation period of BL Cam, we detected in the O-C data short- (144.2 d) and long-term (\sim 3400 d) variations, both incompatible with a scenario of stellar evolution. conclusions heading (mandatory) Interpreted as a light travel-time effect, the short-term O-C variation is indicative of a massive stellar component (0.46 to 1 M_{\sun}) with a short period orbit (144.2 d), within a distance of 0.7 AU from the primary. More observations are needed to confirm the long-term O-C variations: if they were also to be caused by a light travel-time effect, they could be interpreted in terms of a third component, in this case probably a brown dwarf star (\geq 0.03 \ M_{\sun}), orbiting in \sim 3400 d at a distance of 4.5 AU from the primary.Comment: 7 pages, 5 figures, accepted for publication in A&

    Physical properties of ESA Rosetta target asteroid (21) Lutetia: Shape and flyby geometry

    Full text link
    Aims. We determine the physical properties (spin state and shape) of asteroid (21) Lutetia, target of the ESA Rosetta mission, to help in preparing for observations during the flyby on 2010 July 10 by predicting the orientation of Lutetia as seen from Rosetta. Methods. We use our novel KOALA inversion algorithm to determine the physical properties of asteroids from a combination of optical lightcurves, disk-resolved images, and stellar occultations, although the latter are not available for (21) Lutetia. Results. We find the spin axis of (21) Lutetia to lie within 5 degrees of ({\lambda} = 52 deg., {\beta} = -6 deg.) in Ecliptic J2000 reference frame (equatorial {\alpha} = 52 deg., {\delta} = +12 deg.), and determine an improved sidereal period of 8.168 270 \pm 0.000 001 h. This pole solution implies the southern hemisphere of Lutetia will be in "seasonal" shadow at the time of the flyby. The apparent cross-section of Lutetia is triangular as seen "pole-on" and more rectangular as seen "equator-on". The best-fit model suggests the presence of several concavities. The largest of these is close to the north pole and may be associated with large impacts.Comment: 17 pages, 5 figures, 3 tables, submitted to Astronomy and Astrophysic

    Astrometry and geodesy with radio interferometry: experiments, models, results

    Full text link
    Summarizes current status of radio interferometry at radio frequencies between Earth-based receivers, for astrometric and geodetic applications. Emphasizes theoretical models of VLBI observables that are required to extract results at the present accuracy levels of 1 cm and 1 nanoradian. Highlights the achievements of VLBI during the past two decades in reference frames, Earth orientation, atmospheric effects on microwave propagation, and relativity.Comment: 83 pages, 19 Postscript figures. To be published in Rev. Mod. Phys., Vol. 70, Oct. 199
    corecore