597 research outputs found
An Evaluation of Journaling File Systems
Many statisticians would agree that, had it not been for systems, the synthesis of virtual machines might never have occurred. In fact, few systems engineers would disagree with the improvement of the location-identity split. We motivate an algorithm for the synthesis of compilers, which we call Nap
A survey of volatile species in Oort cloud comets C/2001 Q4 (NEAT) and C/2002 T7 (LINEAR) at millimeter wavelengths
The line emission in the coma was measured in the comets C/2001 Q4 (NEAT) and
C/2002 T7 (LINEAR), that were observed on five consecutive nights, 7-11 May
2004, at heliocentric distances of 1.0 and 0.7 AU, respectively, by means of
high-resolution spectroscopy using the 10-m Submillimeter Telescope (SMT). We
present a search for six parent- and product-volatile species (HCN, H2CO, CO,
CS, CH3OH, and HNC) in both comets. Multiline observations of the CH3OH J = 5-4
series allow us to estimate the rotational temperature using the rotation
diagram technique. We derive rotational temperatures of 54(9) K for C/2001 Q4
(NEAT) and 119(34) K for C/2002 T7 (LINEAR) that are roughly consistent with
observations of other comets at similar distances from the Sun. The gas
production rates of material are computed using a spherically symmetric
molecular excitation code that includes collisions between neutrals and
electrons. We find an HCN production rate of 2.96(5)e26 molec.s-1 for comet
C/2001 Q4 (NEAT), corresponding to a mixing ratio with respect to H2O of
1.12(2)e-3. The mean HCN production rate during the observing period is
4.54(10)e26 molec.s-1 for comet C/2002 T7 (LINEAR), which gives a Q_HCN/Q_H2O
mixing ratio of 1.51(3)e-3. With systematically lower mixing ratios in comet
C/2001 Q4 (NEAT), production rate ratios of the observed species with respect
to H2O lie within the typical ranges of dynamically new comets in both objects.
We find a relative low abundance of CO in C/2001 Q4 (NEAT) compared to the
observed range in other comets based on millimeter/submillimeter observations,
and a significant upper limit on the CO production in C/2002 T7 (LINEAR) is
derived. Depletion of CO suggests partial evaporation from the surface layers
during previous visits to the outer Solar System and agrees with previous
measurements of dynamically new comets.Comment: 20 pages, 18 figures. Minor changes to match the published versio
Extending MGS-TES Temperature Retrievals in the Martian Atmosphere up to 90 Km: Retrieval Approach and Results
This paper describes a methodology for performing a temperature retrieval in the Martian atmosphere in the 50-90 km altitude range using spectrally integrated 15 micrometers C02 limb emissions measured by the Thermal Emission Spectrometer (TES), the thermal infrared spectrometer on board the Mars Global Surveyor (MGS). We demonstrate that temperature retrievals from limb observations in the 75-90 km altitude range require accounting for the non-local thermodynamic equilibrium (non-LTE) populations of the C02(v2) vibrational levels. Using the methodology described in the paper, we have retrieved approximately 1200 individual temperature profiles from MGS TES limb observations in the altitude range between 60 and 90 km. 0ur dataset of retrieved temperature profiles is available for download in supplemental materials of this paper. The temperature retrieval uncertainties are mainly caused by radiance noise, and are estimated to be about 2 K at 60 km and below, 4 K at 70 km, 7 K at 80 km, 10 K at 85 km, and 20 K at 90 km. We compare the retrieved profiles to Mars Climate Database temperature profiles and find good qualitative agreement. Quantitatively, our retrieved profiles are in general warmer and demonstrate strong variability with the following values for bias and standard deviations (in brackets) compared to the Martian Year 24 dataset of the Mars Climate Database: 6 (+/-20) K at 60 km, 7.5 (+/-25) K at 65 km, 9 (+/-27) K at 70 km, 9.5 (+/-27) K at 75 km, 10 (+/-28) K at 80 km, 11 (+/-29) K at 85 km, and 11.5 (+/-31) K at 90 km. Possible reasons for the positive temperature bias are discussed.
carbon dioxide molecular vibration
Global Distribution of CO2 VMR in the Mesosphere and Lower Thermosphere and Long-Term Changes Observed by SABER
No abstract availabl
An upper limit for the water outgassing rate of the main-belt comet 176P/LINEAR observed with Herschel/HIFI
176P/LINEAR is a member of the new cometary class known as main-belt comets
(MBCs). It displayed cometary activity shortly during its 2005 perihelion
passage that may be driven by the sublimation of sub-surface ices. We have
therefore searched for emission of the H2O 110-101 ground state rotational line
at 557 GHz toward 176P/LINEAR with the Heterodyne Instrument for the Far
Infrared (HIFI) on board the Herschel Space Observatory on UT 8.78 August 2011,
about 40 days after its most recent perihelion passage, when the object was at
a heliocentric distance of 2.58 AU. No H2O line emission was detected in our
observations, from which we derive sensitive 3-sigma upper limits for the water
production rate and column density of < 4e25 molec/s and of < 3e10 cm^{-2},
respectively. From the peak brightness measured during the object's active
period in 2005, this upper limit is lower than predicted by the relation
between production rates and visual magnitudes observed for a sample of comets
by Jorda et al. (2008) at this heliocentric distance. Thus, 176P/LINEAR was
likely less active at the time of our observation than during its previous
perihelion passage. The retrieved upper limit is lower than most values derived
for the H2O production rate from the spectroscopic search for CN emission in
MBCs.Comment: 5 pages, 2 figures. Minor changes to match published versio
Predicting success of ninth grade mathematics students in Manhattan Junior High School
Call number: LD2668 .R4 1962 R46
Effect of the 3D distribution on water observations made with the SWI: I. Ganymede
Context. Characterising and understanding the atmospheres of Jovian icy moons is one of the key exploration goals of the Submillimetre Wave Instrument (SWI), which is to be flown on ESA\u27s Jupiter Icy Moons Explorer (JUICE) mission.Aims. The aim of this paper is to investigate how and under which conditions a 3D asymmetric distribution of the atmosphere may affect the SWI observations. In this work we target the role of phase angle for both nadir and limb geometries for unresolved and partially resolved disc observations from large distances.Methods. We adapted the LIME software package, a 3D non-local thermodynamical equilibrium radiative transfer model, to evaluate ortho-H2O populations and synthesise the simulated SWI beam spectra for different study cases of Ganymede\u27s atmosphere. The temperature and density vertical distributions were adopted from a previous work. The study cases presented here were selected according to the distance and operational scenarios of moon monitoring anticipated for SWI during the Jupiter phase of the JUICE mission.Results. We demonstrate that nadir and limb observations at different phase angles will modify the line amplitude and width. Unresolved observations where both absorption against surface continuum and limb emission contributes within the beam will lead to characteristic line wing emission, which may also appear in pure nadir geometry for specific phase angles. We also find that for Ganymede, the 3D non-local thermodynamical equilibrium populations are more highly excited in the upper atmosphere near the sub-solar region than they are in 1D spherically symmetric models. Finally, the 3D radiative transfer is better suited to properly simulate spectral lines for cases where density or population gradients exist along the line of sight
Constraining spatial pattern of early activity of comet 67P/C-G with 3D modeling of the MIRO observations
Our aim is to investigate early activity (July 2014) of 67P/CG with 3D coma
and radiative transfer modeling of MIRO measurements, accounting for nucleus
shape, illumination, and orientation of the comet. We investigate MIRO line
shape information for spatial distribution of water activity on the nucleus
during the onset of activity. During this period we show that MIRO line shape
have enough information to clearly isolate contribution from Hapi and Inhotep
independently, and compare it to the nominal case of activity from the entire
illuminated surface. We also demonstrate that spectral line shapes differ from
the 1D model for different viewing geometries and coma conditions relevant to
this study. Specifically, line shapes are somewhat sensitive to the location of
the terminator in the coma. At last, fitting the MIRO observations we show that
the Imhotep region (possible extended source of HO due to CO
activity) contributes only a small fraction of the total number of water
molecules into MIRO beam in the early activity. On the other hand, a strong
enhancement of water activity from the Hapi region seems required to fit the
MIRO line shapes. This is consistent with earlier Rosetta results.
Nevertheless, within the assumption of our coma and surface boundary
conditions, we cannot get a reasonable fit to all MIRO mapping observations in
July 2014, which may illustrate that a more sophisticated coma model or more
accurate temperature/velocity distribution is needed.Comment: 22 pages, 15 figures, submitte
- …
