128 research outputs found

    Optically induced magnetization dynamics and variation of damping parameter in epitaxial Co2MnSi Heusler alloy films

    Get PDF
    Copyright © 2010 The American Physical SocietyAll-optical pump-probe measurements of magnetization dynamics have been performed upon epitaxial Co2MnSi(001) Heusler alloy thin films annealed at temperatures of 300, 400, and 450 °C. An ultrafast laser-induced modification of the magnetocrystalline anisotropy triggers precession which is detected by time-resolved magneto-optical Kerr effect measurements. From the damped oscillatory Kerr rotation, the frequency and relaxation rate of the precession is determined. Using a macrospin solution of the Landau-Lifshitz-Gilbert equation the effective fields acting upon the sample magnetization are deduced. This reveals that the magnetization is virtually independent of the annealing temperature while the fourfold magnetocrystalline anisotropy decreases dramatically with increasing annealing temperature as the film structure changes between the B2 and L21 phases. From the measured relaxation rates, the value of the apparent Gilbert damping parameter is found to depend strongly upon the static field strength and in-plane static field orientation. The variation of the apparent damping parameter is generally well reproduced by an inhomogeneous broadening model in which the presence of B2 and L21 phases leads to a large dispersion of the magnetocrystalline anisotropy. However, for the sample annealed at a temperature of 300 °C, the lack of a detailed fit to the data suggests that the apparent anisotropy of the apparent damping parameter might alternatively arise due to a network of dislocations with fourfold symmetry

    Dependence of spin pumping and spin transfer torque upon Ni81Fe19 thickness in Ta/Ag/Ni81Fe19/Ag/Co2MnGe/Ag/Ta spin-valve structures

    Get PDF
    This is the final version of the article. Available from American Physical Society via the DOI in this record.Spin pumping has been studied within Ta / Ag / Ni 81 Fe 19 (0–5 nm) / Ag (6 nm) / Co 2 MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni 81 Fe 19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co 2 MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNA-FMR) experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfer torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and superparamagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR linewidth that we attribute to improved interface quality. This study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.The authors gratefully acknowledge the support of EPSRC Grant No. EP/J018767/1, and the award of the Exeter-Brown Scholarship in High Frequency Spintronics to C.J.D

    Discovery of common and rare genetic risk variants for colorectal cancer.

    Get PDF
    To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at CHD1. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at P < 5 × 10-8, bringing the number of known independent signals for CRC to ~100. New signals implicate lower-frequency variants, Krüppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs and somatic drivers, and support a role for immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of biology underlying this risk and influence personalized screening strategies and drug development.Goncalo R Abecasis has received compensation from 23andMe and Helix. He is currently an employee of Regeneron Pharmaceuticals. Heather Hampel performs collaborative research with Ambry Genetics, InVitae Genetics, and Myriad Genetic Laboratories, Inc., is on the scientific advisory board for InVitae Genetics and Genome Medical, and has stock in Genome Medical. Rachel Pearlman has participated in collaborative funded research with Myriad Genetics Laboratories and Invitae Genetics but has no financial competitive interest

    Climate changes in mangrove forests and salt marshes

    Full text link

    Plants in aquatic ecosystems: current trends and future directions

    Get PDF
    Aquatic plants fulfil a wide range of ecological roles, and make a substantial contribution to the structure, function and service provision of aquatic ecosystems. Given their well-documented importance in aquatic ecosystems, research into aquatic plants continues to blossom. The 14th International Symposium on Aquatic Plants, held in Edinburgh in September 2015, brought together 120 delegates from 28 countries and six continents. This special issue of Hydrobiologia includes a select number of papers on aspects of aquatic plants, covering a wide range of species, systems and issues. In this paper we present an overview of current trends and future directions in aquatic plant research in the early 21st century. Our understanding of aquatic plant biology, the range of scientific issues being addressed and the range of techniques available to researchers have all arguably never been greater; however, substantial challenges exist to the conservation and management of both aquatic plants and the ecosystems in which they are found. The range of countries and continents represented by conference delegates and authors of papers in the special issue illustrate the global relevance of aquatic plant research in the early 21st century but also the many challenges that this burgeoning scientific discipline must address
    corecore