38 research outputs found

    RUNX2 mutations in Taiwanese patients with cleidocranial dysplasia

    Get PDF
    Cleidocranial dysplasia (CCD) is an autosomal dominant human skeletal disorder comprising hypoplastic clavicles, wide cranial sutures, supernumerary teeth, short stature, and other skeletal abnormalities. It is known that mutations in the human RUNX2 gene mapped at 6p21 are responsible for CCD. We analyzed the mutation patterns of the RUNX2 gene by direct sequencing in six Taiwanese index cases with typical CCD. One of the patients was a familial case and the others were sporadic cases. Sequencing identified four mutations. Three were caused by single nucleotide substitutions, which created a nonsense (p.R391X), two were missense mutations (p.R190W, p.R225Q), and the forth was a novel mutation (c.1119delC), a one-base deletion. Real time quantitative PCR adapted to determine copy numbers of the promoter, all exons and the 3’UTR region of the RUNX2 gene detected the deletion of a single allele in a sporadic case. The results extend the spectrum of RUNX2 mutations in CCD patients and indicate that complete deletions of the RUNX2 gene should be considered in those CCD patients lacking a point mutation detected by direct sequencing

    Drosophila muscleblind Codes for Proteins with One and Two Tandem Zinc Finger Motifs

    Get PDF
    Muscleblind-like proteins, Muscleblind (Mbl) in Drosophila and MBNL1-3 in vertebrates, are regulators of alternative splicing. Human MBNL1 is a key factor in the etiology of myotonic dystrophy (DM), a muscle wasting disease caused by the occurrence of toxic RNA molecules containing CUG/CCUG repeats. MBNL1 binds to these RNAs and is sequestered in nuclear foci preventing it from exerting its normal function, which ultimately leads to mis-spliced mRNAs, a major cause of the disease. Muscleblind-proteins bind to RNAs via N-terminal zinc fingers of the Cys3-His type. These zinc fingers are arranged in one (invertebrates) or two (vertebrates) tandem zinc finger (TZF) motifs with both fingers targeting GC steps in the RNA molecule. Here I show that mbl genes in Drosophila and in other insects also encode proteins with two TZF motifs, highly similar to vertebrate MBNL proteins. In Drosophila the different protein isoforms have overlapping but possibly divergent functions in vivo, evident by their unequal capacities to rescue the splicing defects observed in mbl mutant embryos. In addition, using whole transcriptome analysis, I identified several new splicing targets for Mbl in Drosophila embryos. Two of these novel targets, kkv (krotzkopf-verkehrt, coding for Chitin Synthase 1) and cora (coracle, coding for the Drosophila homolog of Protein 4.1), are not muscle-specific but expressed mainly in epidermal cells, indicating a function for mbl not only in muscles and the nervous system

    Genetic and Chemical Modifiers of a CUG Toxicity Model in Drosophila

    Get PDF
    Non-coding CUG repeat expansions interfere with the activity of human Muscleblind-like (MBNL) proteins contributing to myotonic dystrophy 1 (DM1). To understand this toxic RNA gain-of-function mechanism we developed a Drosophila model expressing 60 pure and 480 interrupted CUG repeats in the context of a non-translatable RNA. These flies reproduced aspects of the DM1 pathology, most notably nuclear accumulation of CUG transcripts, muscle degeneration, splicing misregulation, and diminished Muscleblind function in vivo. Reduced Muscleblind activity was evident from the sensitivity of CUG-induced phenotypes to a decrease in muscleblind genetic dosage and rescue by MBNL1 expression, and further supported by the co-localization of Muscleblind and CUG repeat RNA in ribonuclear foci. Targeted expression of CUG repeats to the developing eye and brain mushroom bodies was toxic leading to rough eyes and semilethality, respectively. These phenotypes were utilized to identify genetic and chemical modifiers of the CUG-induced toxicity. 15 genetic modifiers of the rough eye phenotype were isolated. These genes identify putative cellular processes unknown to be altered by CUG repeat RNA, and they include mRNA export factor Aly, apoptosis inhibitor Thread, chromatin remodelling factor Nurf-38, and extracellular matrix structural component Viking. Ten chemical compounds suppressed the semilethal phenotype. These compounds significantly improved viability of CUG expressing flies and included non-steroidal anti-inflammatory agents (ketoprofen), muscarinic, cholinergic and histamine receptor inhibitors (orphenadrine), and drugs that can affect sodium and calcium metabolism such as clenbuterol and spironolactone. These findings provide new insights into the DM1 phenotype, and suggest novel candidates for DM1 treatments

    Molecular, clinical, and muscle studies in myotonic dystrophy type 1 (DM1) associated with novel variant CCG expansions

    Get PDF
    We assessed clinical, molecular and muscle histopathological features in five unrelated Italian DM1 patients carrying novel variant pathological expansions containing CCG interruptions within the 3'-end of the CTG array at the DMPK locus, detected by bidirectional triplet primed PCR (TP-PCR) and sequencing. Three patients had a negative DM1 testing by routine long-range PCR; the other two patients were identified among 100 unrelated DM1 cases and re-evaluated to estimate the prevalence of variant expansions. The overall prevalence was 4.8 % in our study cohort. There were no major clinical differences between variant and non-variant DM1 patients, except for cognitive involvement. Muscle RNA-FISH, immunofluorescence for MBNL1 and RT-PCR analysis documented the presence of ribonuclear inclusions, their co-localization with MBNL1, and an aberrant splicing pattern involved in DM1 pathogenesis, without any obvious differences between variant and non-variant DM1 patients. Therefore, this study shows that the CCG interruptions at the 3'-end of expanded DMPK alleles do not produce qualitative effects on the RNA-mediated toxic gain-of-function in DM1 muscle tissues. Finally, our results support the conclusion that different patterns of CCG interruptions within the CTG array could modulate the DM1 clinical phenotype, variably affecting the mutational dynamics of the variant repeat

    Clinical and molecular aspects of the myotonic dystrophies: a review.

    No full text
    Type 1 myotonic dystrophy or DM1 (Steinert's disease), which is the commonest muscular dystrophy in adults, has intrigued physicians for over a century. Unusual features, compared with other dystrophies, include myotonia, anticipation, and involvement of other organs, notably the brain, eyes, smooth muscle, cardiac conduction apparatus, and endocrine system. Morbidity is high, with a substantial mortality relating to cardiorespiratory dysfunction. More recently a second form of multisystem myotonic disorder has been recognized and variously designated as proximal myotonic myopathy (PROMM), proximal myotonic dystrophy (PDM), or DM2. For both DM1 and DM2 the molecular basis is expansion of an unstable repeat sequence in a noncoding part of a gene (DMPK in DM1 and ZNF9 in DM2). There is accumulating evidence that the basic molecular mechanism is disruption of mRNA metabolism, which has far-reaching effects on many other genes, in part through the induction of aberrant splicing, explaining the multisystemic nature of the disease. The unstable nature of the expansion provides a molecular explanation for anticipation. This review emphasizes the clinical similarities and differences between DM1 and DM2. It examines current views about the molecular basis of these disorders, and contrasts them with other repeat expansion disorders that have increasingly been recognized as a cause of neurological disease

    Skin features in myotonic dystrophy type 1: An observational study

    No full text
    Poor data regarding skin involvement in Myotonic Dystrophy, also named Dystrophia Myotonica type 1, have been reported. This study aimed to investigate the prevalence and types of skin disorders in adult patients with Myotonic Dystrophy type 1. Fifty-five patients and one hundred age- and sex-matched healthy subjects were referred to a trained dermatologist for a complete skin examination to check for potential cutaneous hallmarks of disease. No difference in prevalence of preneoplastic, neoplastic, and cutaneous lesions was detected between the two groups. Among morphofunctional, proliferative and inflammatory lesions, focal hyperhidrosis (p < 0.0001), follicular hyperkeratosis (p = 0.0003), early androgenic alopecia (p = 0.01), nail pitting (p = 0.003), pedunculus fibromas (p = 0. 01), twisted hair (p = 0.01), seborrheic dermatitis (p = 0.02), macules of hyperpigmentation (p = 0.03) were significantly more frequent in patients compared with controls. In patients with Myotonic Dystrophy type 1 significant differences according to sex were found for: early androgenic alopecia, twisted hair and seborrheic dermatitis, whose prevalence was higher in males (p < 0.0001). Our preliminary results seem to rule out an increased prevalence of pre-neoplastic, and neoplastic skin lesions in Myotonic Dystrophy type 1. On the other hand, an increased prevalence of morphofunctional, inflammatory, and proliferative diseases involving adnexal structures seems to characterize adult patients with Myotonic Dystrophy type 1
    corecore