497 research outputs found
Influence of various polishing methods on pulp temperature: An in vitro study
Objective: After orthodontic debonding, adhesive removal can lead to rises in pulp temperature, causing histological changes or pulp necrosis. The objective of this study was to measure increases in pulp temperature during adhesive removal using different instruments and various cooling procedures. Materials and methods: A thermoelement was introduced into the pulp chamber of 10human incisors. The teeth were immersed in a 36°C water bath up to the cementoenamel junction. Two carbide burs, one polishing disk and two rubber points were used for polishing. All measurements were taken over a 10s period by a single investigator, under slight pressure and with constant motion. Three cooling procedures were examined: no cooling, air cooling and water cooling. Pulp temperatures were measured before polishing and after 10s of polishing. Results: Without cooling, the two rubber points revealed clinically relevant temperature increases of 6.1°C and 12.4°C. Cooling with air and with water reduced pulp temperature in conjunction with all polishing methods. Air cooling was most efficient, except in combination with the polishing disk. Conclusion: Under these study conditions, carbide burs and polishing disks can be used safely and without risk to the pulp, even without cooling. On the other hand, rubber points cause a marked increase in pulp temperature when used without coolin
Allele-specific expression analysis does not support sex chromosome inactivation on the chicken Z chromosome
Heterogametic sex chromosomes have evolved many times independently, and in many cases the loss of functional genes from the sex-limited Y or W chromosome leaves only one functional gene copy on the corresponding X or Z chromosome in the heterogametic sex. Because gene dose often correlates with gene expression level, this difference in gene dose between males and females for X or Z-linked genes in some cases has selected for chromosome-wide transcriptional dosage compensation mechanisms to counteract any reduction in expression in the heterogametic sex. These mechanisms are thought to restore the balance between sex-linked loci and the autosomal genes they interact with, and this also typically results in equal expression between the sexes. However, dosage compensation in many other species is incomplete, and in the case of birds average expression from males (ZZ) remains higher than in females (ZW). Interestingly, recent reports in chickens and related species have shown that the Z chromosome is expressed less in males than would be expected from two copies of the chromosome, and recent data from cell-based approaches on 11 loci in chicken have suggested that one Z chromosome is partially inactivated in males, in a mechanism thought to be homologous to X inactivation in therian mammals. In the present study, we use controlled crosses in three tissues to test for the presence of Z inactivation in males, which would be expected to bias transcription to the active gene copy (allele-specific expression). We show that for the vast majority of genes on the chicken Z chromosome, males express both parental alleles at statistically similar levels, indicating no Z chromosome inactivation. For those Z chromosome loci with detectable ASE in males, we show that the most likely cause is cis-regulatory variation, rather than Z chromosome inactivation. Taken together, our results indicate that unlike the X chromosome in mammals, Z inactivation does not affect an appreciable number of loci in chicken
Recent sex chromosome divergence despite ancient dioecy in the willow Salix viminalis.
Sex chromosomes can evolve when recombination is halted between a pair of chromosomes, and this can lead to degeneration of the sex-limited chromosome. In the early stages of differentiation sex chromosomes are homomorphic, and even though homomorphic sex chromosomes are very common throughout animals and plants, we know little about the evolutionary forces shaping these types of sex chromosomes. We used DNA- and RNA-Seq data from females and males to explore the sex chromosomes in the female heterogametic willow, Salix viminalis, a species with ancient dioecy but with homomorphic sex chromosomes. We detected no major sex differences in read coverage in the SD region, indicating that the W region has not significantly degenerated. However, SNP densities in the SD region are higher in females compared to males, indicating very recent recombination suppression, followed by the accumulation of sex-specific SNPs. Interestingly, we identified two female-specific scaffolds that likely represent W-chromosome-specific sequence. We show that genes located in the SD region display a mild excess of male-biased expression in sex-specific tissue, and we use allele-specific gene expression analysis to show that this is the result of masculinization of expression on the Z chromosome rather than degeneration of female-expression on the W chromosome. Together, our results demonstrate that insertion of small DNA fragments and accumulation of sex-biased gene expression can occur before the detectable decay of the sex-limited chromosome
Genotyping of Giardia in Dutch patients and animals: a phylogenetic analysis of human and animal isolates.
Giardia duodenalis (syn. Giardia lamblia, Giardia intestinalis) is a protozoan organism that can infect the intestinal tract of many animal species including mammals. Genetic heterogeneity of G. duodenalis is well described but the zoonotic potential is still not clear. In this study, we analysed 100 Giardia DNA samples directly isolated from human stool specimens, to get more insight in the different G. duodenalis assemblages present in the Dutch human population. Results showed that these human isolates could be divided into two main Assemblages A and B within the G. duodenalis group on the basis of PCR assays specific for the Assemblages A and B and the DNA sequences of 18S ribosomal RNA and the glutamate dehydrogenase (gdh) genes. Genotyping results showed that G. duodenalis isolates originating from Dutch human patients belonged in 35% of the cases to Assemblage A (34/98) and in 65% of the cases to Assemblage B (64/98) whereas two human cases remained negative in all assays tested. In addition, we compared these human samples with animal samples from the Netherlands and human and animal samples from other countries. A phylogenetic analysis was carried out on the DNA sequences obtained from these Giardia and those available in GenBank. Using gdh DNA sequence analysis, human and animal Assemblage A and B Giardia isolates could be identified. However, phylogenetic analysis revealed different sub-clustering for human and animal isolates where host-species-specific assemblages (C, D, E, F and G) could be identified. The geographic origin of the human and animal samples was not a discriminating factor
The long and winding road leading to the successful introgression of downy mildew resistance into onion
Downy mildew resistance originating from Allium roylei Stearn provides a complete resistance to onions and is based on one, dominant gene. Since A. roylei can successfully be hybridized with onion (A. cepa L.), a breeding scheme aimed at the introgression of this gene was initiated ca. 20 years ago. Several setbacks in this programme were encountered, firstly the identified molecular marker linked to the downy mildew resistance locus became increasingly difficult to use and finally lost its discriminating power and secondly the final step, making homozygous introgression lines (ILs), turned out to be more difficult then was hoped. GISH analysis showed that the chromosomal region harbouring the resistance locus was the only remaining piece of A. roylei in the nuclear background of onion and it also confirmed that this region was located on the distal end of chromosome 3. It was hypothesized that some factor present in the remaining A. roylei region was lethal when homozygously present in an onion genetic background. The identification of an individual with a smaller and more distally located introgression fragment and homozygous ILs in its progeny validated this hypothesis. With the help of these nearly isogenic lines four AFLP® markers closely linked to the resistance gene were identified, which can be used for marker-aided selection. The introduction of downy mildew resistance caused by Peronospora destructor into onion is a significant step forward in the development of environmentally-friendly onion cultivars.<br/>Downy mildew resistance originating from Allium roylei Stearn provides a complete resistance to onions and is based on one, dominant gene. Since A. roylei can successfully be hybridized with onion (A. cepa L.), a breeding scheme aimed at the introgression of this gene was initiated ca. 20 years ago. Several setbacks in this programme were encountered, firstly the identified molecular marker linked to the downy mildew resistance locus became increasingly difficult to use and finally lost its discriminating power and secondly the final step, making homozygous introgression lines (ILs), turned out to be more difficult then was hoped. GISH analysis showed that the chromosomal region harbouring the resistance locus was the only remaining piece of A. roylei in the nuclear background of onion and it also confirmed that this region was located on the distal end of chromosome 3. It was hypothesized that some factor present in the remaining A. roylei region was lethal when homozygously present in an onion genetic background. The identification of an individual with a smaller and more distally located introgression fragment and homozygous ILs in its progeny validated this hypothesis. With the help of these nearly isogenic lines four AFLP (R) markers closely linked to the resistance gene were identified, which can be used for marker-aided selection. The introduction of downy mildew resistance caused by Peronospora destructor into onion is a significant step forward in the development of environmentally-friendly onion cultivars
Whole genome resequencing reveals signatures of selection and timing of duck domestication
Background
The genetic basis of animal domestication remains poorly understood, and systems with substantial phenotypic differences between wild and domestic populations are useful for elucidating the genetic basis of adaptation to new environments as well as the genetic basis of rapid phenotypic change. Here, we sequenced the whole genome of 78 individual ducks, from two wild and seven domesticated populations, with an average sequencing depth of 6.42X per individual.
Results
Our population and demographic analyses indicate a complex history of domestication, with early selection for separate meat and egg lineages. Genomic comparison of wild to domesticated populations suggest that genes affecting brain and neuronal development have undergone strong positive selection during domestication. Our FST analysis also indicates that the duck white plumage is the result of selection at the melanogenesis associated transcription factor locus.
Conclusions
Our results advance the understanding of animal domestication and selection for complex phenotypic traits
Two-Photon Imaging of Calcium in Virally Transfected Striate Cortical Neurons of Behaving Monkey
Two-photon scanning microscopy has advanced our understanding of neural signaling in non-mammalian species and mammals. Various developments are needed to perform two-photon scanning microscopy over prolonged periods in non-human primates performing a behavioral task. In striate cortex in two macaque monkeys, cortical neurons were transfected with a genetically encoded fluorescent calcium sensor, memTNXL, using AAV1 as a viral vector. By constructing an extremely rigid and stable apparatus holding both the two-photon scanning microscope and the monkey's head, single neurons were imaged at high magnification for prolonged periods with minimal motion artifacts for up to ten months. Structural images of single neurons were obtained at high magnification. Changes in calcium during visual stimulation were measured as the monkeys performed a fixation task. Overall, functional responses and orientation tuning curves were obtained in 18.8% of the 234 labeled and imaged neurons. This demonstrated that the two-photon scanning microscopy can be successfully obtained in behaving primates
Protection against Diarrhea Associated with Giardia intestinalis Is Lost with Multi-Nutrient Supplementation: A Study in Tanzanian Children
Giardia intestinalis is a well-known cause of diarrhea in industrialized countries. In children in developing countries, asymptomatic infections are common and their role as cause of diarrhea has been questioned. In a cohort of rural Tanzanian pre-school children, we assessed the association between the presence of Giardia at baseline and subsequent diarrhea risk. The study was conducted in the context of a randomised trial assessing the effect of supplementation with zinc and other micro-nutrients on malaria, and half of the children daily received a multi-nutrient supplement. Surprisingly, we found that the presence of Giardia at baseline was associated with a substantial reduction in diarrhea risk. Multivariate statistical analysis showed that this protection could not be explained by differences in age or walking distance to the dispensary between children with and without Giardia. Because we cannot exclude that children differed in other (unmeasured) characteristics, we cannot draw firm conclusions about the causality of the observed association, but our findings support the view that the parasite is not an important cause of diarrhea in highly endemic settings. Striking was that the Giardia-associated protection was lost when children received multi-nutrients. Our data do not provide information about the mechanisms involved, but suggest that multi-nutrients may influence the compositionor pathogenicity of intestinal biota
- …