231 research outputs found
Development of liquid xenon detectors for medical imaging
In the present paper, we report on our developments of liquid xenon detectors
for medical imaging, positron emission tomography and single photon imaging, in
particular. The results of the studies of several photon detectors
(photomultiplier tubes and large area avalanche photodiode) suitable for
detection of xenon scintillation are also briefly described.Comment: 13 pages, 5 figures, presented on the International Workshop on
Techniques and Applications of Xenon Detectors (Xenon01), ICRR, Univ. of
Tokyo, Kashiwa, Japan, December 3-4, 2001 (submitted to proceedings
A liquid Xenon Positron Emission Tomograph for small animal imaging : first experimental results of a prototype cell
A detector using liquid Xenon (LXe) in the scintillation mode is studied for
Positron Emission Tomography (PET) of small animals. Its specific design aims
at taking full advantage of the Liquid Xenon scintillation properties. This
paper reports on energy, time and spatial resolution capabilities of the first
LXe prototype module equipped with a Position Sensitive Photo- Multiplier tube
(PSPMT) operating in the VUV range (178 nm) and at 165 K. The experimental
results show that such a LXe PET configuration might be a promising solution
insensitive to any parallax effect.Comment: 34 pages, 18 pages, to appear in NIM
Performance of a Chamber for Studying the Liquid Xenon Response to Nuclear Recoils
The design and performance of a 1.2 liter liquid xenon chamber equipped with
7 two-inch photomultiplier tubes, with the purpose of studying the
scintillation response of xenon to gamma-rays and neutrons, is described.
Measurements with gamma-rays indicate a high VUV light collection efficiency
resulting in ~5.5 photoelectrons per 1 keV of deposited energy. The energy
resolution (FWHM) is 18% and 22%, for 122 keV and 511 keV gamma-rays,
respectively. An algorithm for the reconstruction of the scintillation
coordinates in (x,y) plane was developed and tested. The position resolution is
estimated to be 6.9 mm (sigma) for 122 keV gamma-rays.Comment: 6 pages, 6 figures; Presented at IEEE Nuclear Science Symposium and
Medical Imaging Conference, Rome 2004; Submitted to IEEE Transactions on
Nuclear Scienc
WIMP-nucleon cross-section results from the second science run of ZEPLIN-III
We report experimental upper limits on WIMP-nucleon elastic scattering cross
sections from the second science run of ZEPLIN-III at the Boulby Underground
Laboratory. A raw fiducial exposure of 1,344 kg.days was accrued over 319 days
of continuous operation between June 2010 and May 2011. A total of eight events
was observed in the signal acceptance region in the nuclear recoil energy range
7-29 keV, which is compatible with background expectations. This allows the
exclusion of the scalar cross-section above 4.8E-8 pb near 50 GeV/c^2 WIMP mass
with 90% confidence. Combined with data from the first run, this result
improves to 3.9E-8 pb. The corresponding WIMP-neutron spin-dependent
cross-section limit is 8.0E-3 pb. The ZEPLIN programme reaches thus its
conclusion at Boulby, having deployed and exploited successfully three liquid
xenon experiments of increasing reach
Quenching Factor for Low Energy Nuclear Recoils in a Plastic Scintillator
Plastic scintillators are widely used in industry, medicine and scientific
research, including nuclear and particle physics. Although one of their most
common applications is in neutron detection, experimental data on their
response to low-energy nuclear recoils are scarce. Here, the relative
scintillation efficiency for neutron-induced nuclear recoils in a
polystyrene-based plastic scintillator (UPS-923A) is presented, exploring
recoil energies between 125 keV and 850 keV. Monte Carlo simulations,
incorporating light collection efficiency and energy resolution effects, are
used to generate neutron scattering spectra which are matched to observed
distributions of scintillation signals to parameterise the energy-dependent
quenching factor. At energies above 300 keV the dependence is reasonably
described using the semi-empirical formulation of Birks and a kB factor of
(0.014+/-0.002) g/MeVcm^2 has been determined. Below that energy the measured
quenching factor falls more steeply than predicted by the Birks formalism.Comment: 8 pages, 9 figure
The scintillation and ionization yield of liquid xenon for nuclear recoils
XENON10 is an experiment designed to directly detect particle dark matter. It
is a dual phase (liquid/gas) xenon time-projection chamber with 3D position
imaging. Particle interactions generate a primary scintillation signal (S1) and
ionization signal (S2), which are both functions of the deposited recoil energy
and the incident particle type. We present a new precision measurement of the
relative scintillation yield \leff and the absolute ionization yield Q_y, for
nuclear recoils in xenon. A dark matter particle is expected to deposit energy
by scattering from a xenon nucleus. Knowledge of \leff is therefore crucial for
establishing the energy threshold of the experiment; this in turn determines
the sensitivity to particle dark matter. Our \leff measurement is in agreement
with recent theoretical predictions above 15 keV nuclear recoil energy, and the
energy threshold of the measurement is 4 keV. A knowledge of the ionization
yield \Qy is necessary to establish the trigger threshold of the experiment.
The ionization yield \Qy is measured in two ways, both in agreement with
previous measurements and with a factor of 10 lower energy threshold.Comment: 8 pages, 9 figures. To be published in Nucl. Instrum. Methods
New measurement of neutron capture resonances of 209Bi
The neutron capture cross section of Bi209 has been measured at the CERN n
TOF facility by employing the pulse-height-weighting technique. Improvements
over previous measurements are mainly because of an optimized detection system,
which led to a practically negligible neutron sensitivity. Additional
experimental sources of systematic error, such as the electronic threshold in
the detectors, summing of gamma-rays, internal electron conversion, and the
isomeric state in bismuth, have been taken into account. Gamma-ray absorption
effects inside the sample have been corrected by employing a nonpolynomial
weighting function. Because Bi209 is the last stable isotope in the reaction
path of the stellar s-process, the Maxwellian averaged capture cross section is
important for the recycling of the reaction flow by alpha-decays. In the
relevant stellar range of thermal energies between kT=5 and 8 keV our new
capture rate is about 16% higher than the presently accepted value used for
nucleosynthesis calculations. At this low temperature an important part of the
heavy Pb-Bi isotopes are supposed to be synthesized by the s-process in the He
shells of low mass, thermally pulsing asymptotic giant branch stars. With the
improved set of cross sections we obtain an s-process fraction of 19(3)% of the
solar bismuth abundance, resulting in an r-process residual of 81(3)%. The
present (n,gamma) cross-section measurement is also of relevance for the design
of accelerator driven systems based on a liquid metal Pb/Bi spallation target.Comment: 10 pages, 5figures, recently published in Phys. Rev.
Measurement of the (90,91,92,93,94,96)Zr(n,gamma) and (139)La(n,gamma) cross sections at n_TOF
Open AccessNeutron capture cross sections of Zr and La isotopes have important implications in the field of nuclear astrophysics as well as in the nuclear technology. In particular the Zr isotopes play a key role for the determination of the neutron density in the He burning zone of the Red Giant star, while the (139)La is important to monitor the s-process abundances from Ba up to Ph. Zr is also largely used as structural materials of traditional and advanced nuclear reactors. The nuclear resonance parameters and the cross section of (90,91,92,93,94,96)Zr and (139)La have been measured at the n_TOF facility at CERN. Based on these data the capture resonance strength and the Maxwellian-averaged cross section were calculated
- …