231 research outputs found

    Development of liquid xenon detectors for medical imaging

    Full text link
    In the present paper, we report on our developments of liquid xenon detectors for medical imaging, positron emission tomography and single photon imaging, in particular. The results of the studies of several photon detectors (photomultiplier tubes and large area avalanche photodiode) suitable for detection of xenon scintillation are also briefly described.Comment: 13 pages, 5 figures, presented on the International Workshop on Techniques and Applications of Xenon Detectors (Xenon01), ICRR, Univ. of Tokyo, Kashiwa, Japan, December 3-4, 2001 (submitted to proceedings

    A liquid Xenon Positron Emission Tomograph for small animal imaging : first experimental results of a prototype cell

    Full text link
    A detector using liquid Xenon (LXe) in the scintillation mode is studied for Positron Emission Tomography (PET) of small animals. Its specific design aims at taking full advantage of the Liquid Xenon scintillation properties. This paper reports on energy, time and spatial resolution capabilities of the first LXe prototype module equipped with a Position Sensitive Photo- Multiplier tube (PSPMT) operating in the VUV range (178 nm) and at 165 K. The experimental results show that such a LXe PET configuration might be a promising solution insensitive to any parallax effect.Comment: 34 pages, 18 pages, to appear in NIM

    Performance of a Chamber for Studying the Liquid Xenon Response to Nuclear Recoils

    Full text link
    The design and performance of a 1.2 liter liquid xenon chamber equipped with 7 two-inch photomultiplier tubes, with the purpose of studying the scintillation response of xenon to gamma-rays and neutrons, is described. Measurements with gamma-rays indicate a high VUV light collection efficiency resulting in ~5.5 photoelectrons per 1 keV of deposited energy. The energy resolution (FWHM) is 18% and 22%, for 122 keV and 511 keV gamma-rays, respectively. An algorithm for the reconstruction of the scintillation coordinates in (x,y) plane was developed and tested. The position resolution is estimated to be 6.9 mm (sigma) for 122 keV gamma-rays.Comment: 6 pages, 6 figures; Presented at IEEE Nuclear Science Symposium and Medical Imaging Conference, Rome 2004; Submitted to IEEE Transactions on Nuclear Scienc

    WIMP-nucleon cross-section results from the second science run of ZEPLIN-III

    Get PDF
    We report experimental upper limits on WIMP-nucleon elastic scattering cross sections from the second science run of ZEPLIN-III at the Boulby Underground Laboratory. A raw fiducial exposure of 1,344 kg.days was accrued over 319 days of continuous operation between June 2010 and May 2011. A total of eight events was observed in the signal acceptance region in the nuclear recoil energy range 7-29 keV, which is compatible with background expectations. This allows the exclusion of the scalar cross-section above 4.8E-8 pb near 50 GeV/c^2 WIMP mass with 90% confidence. Combined with data from the first run, this result improves to 3.9E-8 pb. The corresponding WIMP-neutron spin-dependent cross-section limit is 8.0E-3 pb. The ZEPLIN programme reaches thus its conclusion at Boulby, having deployed and exploited successfully three liquid xenon experiments of increasing reach

    Quenching Factor for Low Energy Nuclear Recoils in a Plastic Scintillator

    Get PDF
    Plastic scintillators are widely used in industry, medicine and scientific research, including nuclear and particle physics. Although one of their most common applications is in neutron detection, experimental data on their response to low-energy nuclear recoils are scarce. Here, the relative scintillation efficiency for neutron-induced nuclear recoils in a polystyrene-based plastic scintillator (UPS-923A) is presented, exploring recoil energies between 125 keV and 850 keV. Monte Carlo simulations, incorporating light collection efficiency and energy resolution effects, are used to generate neutron scattering spectra which are matched to observed distributions of scintillation signals to parameterise the energy-dependent quenching factor. At energies above 300 keV the dependence is reasonably described using the semi-empirical formulation of Birks and a kB factor of (0.014+/-0.002) g/MeVcm^2 has been determined. Below that energy the measured quenching factor falls more steeply than predicted by the Birks formalism.Comment: 8 pages, 9 figure

    The scintillation and ionization yield of liquid xenon for nuclear recoils

    Get PDF
    XENON10 is an experiment designed to directly detect particle dark matter. It is a dual phase (liquid/gas) xenon time-projection chamber with 3D position imaging. Particle interactions generate a primary scintillation signal (S1) and ionization signal (S2), which are both functions of the deposited recoil energy and the incident particle type. We present a new precision measurement of the relative scintillation yield \leff and the absolute ionization yield Q_y, for nuclear recoils in xenon. A dark matter particle is expected to deposit energy by scattering from a xenon nucleus. Knowledge of \leff is therefore crucial for establishing the energy threshold of the experiment; this in turn determines the sensitivity to particle dark matter. Our \leff measurement is in agreement with recent theoretical predictions above 15 keV nuclear recoil energy, and the energy threshold of the measurement is 4 keV. A knowledge of the ionization yield \Qy is necessary to establish the trigger threshold of the experiment. The ionization yield \Qy is measured in two ways, both in agreement with previous measurements and with a factor of 10 lower energy threshold.Comment: 8 pages, 9 figures. To be published in Nucl. Instrum. Methods

    New measurement of neutron capture resonances of 209Bi

    Get PDF
    The neutron capture cross section of Bi209 has been measured at the CERN n TOF facility by employing the pulse-height-weighting technique. Improvements over previous measurements are mainly because of an optimized detection system, which led to a practically negligible neutron sensitivity. Additional experimental sources of systematic error, such as the electronic threshold in the detectors, summing of gamma-rays, internal electron conversion, and the isomeric state in bismuth, have been taken into account. Gamma-ray absorption effects inside the sample have been corrected by employing a nonpolynomial weighting function. Because Bi209 is the last stable isotope in the reaction path of the stellar s-process, the Maxwellian averaged capture cross section is important for the recycling of the reaction flow by alpha-decays. In the relevant stellar range of thermal energies between kT=5 and 8 keV our new capture rate is about 16% higher than the presently accepted value used for nucleosynthesis calculations. At this low temperature an important part of the heavy Pb-Bi isotopes are supposed to be synthesized by the s-process in the He shells of low mass, thermally pulsing asymptotic giant branch stars. With the improved set of cross sections we obtain an s-process fraction of 19(3)% of the solar bismuth abundance, resulting in an r-process residual of 81(3)%. The present (n,gamma) cross-section measurement is also of relevance for the design of accelerator driven systems based on a liquid metal Pb/Bi spallation target.Comment: 10 pages, 5figures, recently published in Phys. Rev.

    Measurement of the (90,91,92,93,94,96)Zr(n,gamma) and (139)La(n,gamma) cross sections at n_TOF

    Get PDF
    Open AccessNeutron capture cross sections of Zr and La isotopes have important implications in the field of nuclear astrophysics as well as in the nuclear technology. In particular the Zr isotopes play a key role for the determination of the neutron density in the He burning zone of the Red Giant star, while the (139)La is important to monitor the s-process abundances from Ba up to Ph. Zr is also largely used as structural materials of traditional and advanced nuclear reactors. The nuclear resonance parameters and the cross section of (90,91,92,93,94,96)Zr and (139)La have been measured at the n_TOF facility at CERN. Based on these data the capture resonance strength and the Maxwellian-averaged cross section were calculated
    corecore