110 research outputs found

    A computational investigation of iceberg capsize as a driver of explosive ice-shelf disintegration.

    Get PDF
    Potential energy released from the capsize of ice-shelf fragments (icebergs) is the immediate driver of the brief explosive phase of ice-shelf disintegration along the Antarctic Peninsula (e.g. the Larsen A, Larsen B and Wilkins ice shelves). The majority of this energy powers the rapidly expanding plume of ice-shelf fragments that expands outward into the open ocean; a smaller fraction of this energy goes into surface gravity waves and other dynamic interactions between ice and water that can sustain the continued fragmentation and break-up of the original ice shelf. As an initial approach to the investigation of ice-shelf fragment capsize in ice-shelf collapse, we develop a simple conceptual model involving ideal rectangular icebergs, initially in unstable or metastable orientations, which are assembled into a tightly packed mass that subsequently disassembles via massed capsize. Computations based on this conceptual model display phenomenological similarity to aspects of real ice-shelf collapse. A promising result of the conceptual model presented here is a description of how iceberg aspect ratio and its statistical variance, the two parameters related to ice-shelf fracture patterns, influence the enabling conditions to be satisfied by slow-acting processes (e.g. environmentally driven melting) that facilitate ice-shelf disintegration.This work is supported by the US National Science Foundation under grants ANT-0944193, OPP-0838811 and CMG-0934534. D.S. Abbot was supported by the T.C. Chamberlin Fellowship of the University of Chicago and the Canadian Institute for Advanced Research. We thank reviewers J. Johnson and T. Scambos and scientific editor L. Stearns for substantial help in clarifying the work presented here. The first author innovated the methods and performed the computations presented here. Co-authors, listed in alphabetical order, had significant but supportive roles.Ye

    Shale gas production: potential versus actual greenhouse gas emissions

    Get PDF
    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during 2010. Data from each of the approximately 4000 horizontal shale gas wells brought online that year are used to show that about 900 Gg CH[subscript 4] of potential fugitive emissions were generated by these operations, or 228 Mg CH[subscript 4] per well—a figure inappropriately used in analyses of the GHG impact of shale gas. In fact, along with simply venting gas produced during the completion of shale gas wells, two additional techniques are widely used to handle these potential emissions: gas flaring and reduced emission 'green' completions. The use of flaring and reduced emission completions reduce the levels of actual fugitive emissions from shale well completion operations to about 216 Gg CH[subscript 4], or 50 Mg CH[subscript 4] per well, a release substantially lower than several widely quoted estimates. Although fugitive emissions from the overall natural gas sector are a proper concern, it is incorrect to suggest that shale gas-related hydraulic fracturing has substantially altered the overall GHG intensity of natural gas production

    Laboratory investigations of iceberg capsize dynamics, energy dissipation and tsunamigenesis

    Get PDF
    We present laboratory experiments designed to quantify the stability and energy budget of buoyancy-driven iceberg capsize.We present laboratory experiments designed to quantify the stability and energy budget of buoyancy-driven iceberg capsize. Box-shaped icebergs were constructed out of low-density plastic, hydrostatically placed in an acrylic water tank containing freshwater of uniform density, and allowed (or forced, if necessary) to capsize. The maximum kinetic energy (translational plus rotational) of the icebergs was 15% of the total energy released during capsize, and radiated surface wave energy was 1% of the total energy released. The remaining energy was directly transferred into the water via hydrodynamic coupling, viscous drag, and turbulence. The dependence of iceberg capsize instability on iceberg aspect ratio implied by the tank experiments was found to closely agree with analytical predictions based on a simple, hydrostatic treatment of iceberg capsize. This analytical treatment, along with the high Reynolds numbers for the experiments (and considerably higher values for capsizing icebergs in nature), indicates that turbulence is an important mechanism of energy dissipation during iceberg capsize and can contribute a potentially important source of mixing in the stratified ocean proximal to marine ice margins.Funding for this project was provided by the U.S. National Science Foundation (ANT0944193, ANT0732869, ANS0806393, and DMR-0807012). D.S.A. was supported by the T. C. Chamberlin Fellowship of the University of Chicago and the Canadian Institute for Advanced Research. We thank the Fultz family for supporting the hydrodynamics laboratory at the University of Chicago. Comments from A. Jenkins, M. Funk, an anonymous reviewer, and editor M. Truffer greatly improved the clarity of this manuscript.Ye

    Geophysical and geochemical survey of a large marine pockmark on the Malin Shelf, Ireland

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q01011, doi:10.1029/2011GC003787.Marine pockmarks are a specific type of seabed geological setting resembling craters or pits and are considered seabed surface expressions of fluid flow in the subsurface. A large composite pockmark on the Malin Shelf, off the northern coast of Ireland was surveyed and ground truthed to assess its activity and investigate fluid related processes in the subsurface. Geophysical (including acoustic and electromagnetic) data confirmed the subsurface presence of signatures typical of fluids within the sediment. Shallow seismic profiling revealed a large shallow gas pocket and typical gas related indicators such as acoustic blanking and enhanced reflectors present underneath and around the large pockmark. Sulphate profiles indicate that gas from the shallow reservoir has been migrating upwards, at least recently. However, there are no chimney structures observed in the sub-bottom data and the migration pathways are not apparent. Electromagnetic data show slightly elevated electrical conductivity on the edges of the pockmarks and a drop below regional levels within the confines of the pockmark, suggesting changes in physical properties of the sediment. Nuclear Magnetic Resonance (NMR) experiments were employed to characterize the organic component of sediments from selected depths. Very strong microbial signatures were evident in all NMR spectra but microbes outside the pockmark appear to be much more active than inside. These observations coincide with spikes in conductivity and the lateral gas bearing body suggesting that there is an increase in microbial activity and biomass when gas is present.We wish to thank the Geological Survey of Ireland, the INtegrated Mapping FOr the Sustainable Development of Ireland’s MArine Resource (INFOMAR) program, the Irish Environmental Protection Agency, Science Foundation of Ireland, QUESTOR (Queens University Belfast) and the Irish Council for Science, engineering and technology for funding this research. AJS thanks NSERC, (Strategic and Discovery Programs), the Canada Foundation for Innovation (CFI), and the Ministry of Research and Innovation (MRI) for providing Canadian funding. The survey data utilized in the research has been co‐funded by the Geological Survey of Ireland and the Offshore Irish Petroleum Infrastructure Programme (PIP; Ref. No: IS05/16 Malin Basin EM).2012-07-1

    A three-dimensional model of wave attenuation in the marginal ice zone

    Get PDF
    Extent: 17p.A three-dimensional model of wave scattering by a large array of floating thin elastic plates is used to predict the rate of ocean wave attenuation in the marginal ice zone in terms of the properties of the ice cover and the incoming wavefield. This is regarded as a small step toward assimilating interactions of ocean waves with areas of sea ice into oceanic general circulation models. Numerical results confirm previous findings that attenuation is predominantly affected by wave period and by the average thickness of the ice cover. It is found that the shape and distribution of the floes and the inclusion of an Archimedean draft has little impact on the attenuation produced. The model demonstrates a linear relationship between ice cover concentration and attenuation. An additional study is conducted into the directional evolvement of the wavefield, where collimation and spreading can both occur, depending on the physical circumstances. Finally, the attenuation predicted by the new three-dimensional model is compared with an existing two-dimensional model and with two sets of experimental data, with the latter producing convincing agreement.L. G. Bennetts, M. A. Peter, V. A. Squire, and M. H. Meyla

    Formation of metre-scale bladed roughness on Europa's surface by ablation of ice

    Get PDF
    On Earth, the sublimation of massive ice deposits at equatorial latitudes under cold and dry conditions in the absence of any liquid melt leads to the formation of spiked and bladed textures eroded into the surface of the ice. These sublimation-sculpted blades are known as penitentes. For this process to take place on another planet, the ice must be sufficiently volatile to sublimate under surface conditions and diffusive processes that act to smooth the topography must operate more slowly. Here we calculate sublimation rates of water ice across the surface of Jupiter’s moon Europa. We find that surface sublimation rates exceed those of erosion by space weathering processes in Europa’s equatorial belt (latitudes below 23°), and that conditions would favour penitente growth. We estimate that penitentes on Europa could reach 15 m in depth with a spacing of 7.5 m near the equator, on average, if they were to have developed across the interval permitted by Europa’s mean surface age. Although available images of Europa have insufficient resolution to detect surface roughness at the multi-metre scale, radar and thermal data are consistent with our interpretation. We suggest that penitentes could pose a hazard to a future lander on Europa

    'If they only knew what I know':Attitude change from education about 'fracking'

    Get PDF
    corecore