51 research outputs found

    Spotlight on Geminin

    Get PDF
    In the previous issue of Breast Cancer Research, Gardner and co-workers describe a novel interaction between Geminin, a protein that prevents reinitiation of DNA replication, and Topoisomerase IIα (TopoIIα), an enzyme essential for removing catenated intertwines between sister chromatids. Geminin facilitates the action of TopoIIα, thereby promoting termination of DNA replication at the same time it inhibits initiation. In this manner, Geminin ensures that cells duplicate their genome once, but only once, each time they divide. Remarkably, either depletion of Geminin or over-expression of Geminin inhibits the action of TopoIIα, thereby making Geminin an excellent target for cancer chemotherapy

    Inner/Outer Nuclear Membrane Fusion in Nuclear Pore Assembly: Biochemical Demonstration and Molecular Analysis

    Get PDF
    The nuclear pore complex (NPC) is characterized by a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel, within which the nuclear pore is built, has little evolutionary precedent. In this report we demonstrate and map the inner/outer nuclear membrane fusion in NPC assembly

    Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thousands of parthenogenetic animal species have been described and cytogenetic manifestations of this reproductive mode are well known. However, little is understood about the molecular determinants of parthenogenesis. The <it>Daphnia pulex </it>genome must contain the molecular machinery for different reproductive modes: sexual (both male and female meiosis) and parthenogenetic (which is either cyclical or obligate). This feature makes <it>D. pulex </it>an ideal model to investigate the genetic basis of parthenogenesis and its consequences for gene and genome evolution. Here we describe the inventory of meiotic genes and their expression patterns during meiotic and parthenogenetic reproduction to help address whether parthenogenesis uses existing meiotic and mitotic machinery, or whether novel processes may be involved.</p> <p>Results</p> <p>We report an inventory of 130 homologs representing over 40 genes encoding proteins with diverse roles in meiotic processes in the genome of <it>D. pulex</it>. Many genes involved in cell cycle regulation and sister chromatid cohesion are characterized by expansions in copy number. In contrast, most genes involved in DNA replication and homologous recombination are present as single copies. Notably, <it>RECQ2 </it>(which suppresses homologous recombination) is present in multiple copies while <it>DMC1 </it>is the only gene in our inventory that is absent in the <it>Daphnia </it>genome. Expression patterns for 44 gene copies were similar during meiosis <it>versus </it>parthenogenesis, although several genes displayed marked differences in expression level in germline and somatic tissues.</p> <p>Conclusion</p> <p>We propose that expansions in meiotic gene families in <it>D. pulex </it>may be associated with parthenogenesis. Taking into account our findings, we provide a mechanistic model of parthenogenesis, highlighting steps that must differ from meiosis including sister chromatid cohesion and kinetochore attachment.</p

    DNA mismatch repair gene MSH6 implicated in determining age at natural menopause

    Get PDF
    notes: PMCID: PMC3976329This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.The length of female reproductive lifespan is associated with multiple adverse outcomes, including breast cancer, cardiovascular disease and infertility. The biological processes that govern the timing of the beginning and end of reproductive life are not well understood. Genetic variants are known to contribute to ∼50% of the variation in both age at menarche and menopause, but to date the known genes explain <15% of the genetic component. We have used genome-wide association in a bivariate meta-analysis of both traits to identify genes involved in determining reproductive lifespan. We observed significant genetic correlation between the two traits using genome-wide complex trait analysis. However, we found no robust statistical evidence for individual variants with an effect on both traits. A novel association with age at menopause was detected for a variant rs1800932 in the mismatch repair gene MSH6 (P = 1.9 × 10(-9)), which was also associated with altered expression levels of MSH6 mRNA in multiple tissues. This study contributes to the growing evidence that DNA repair processes play a key role in ovarian ageing and could be an important therapeutic target for infertility.UK Medical Research CouncilWellcome Trus

    Mouse genomic variation and its effect on phenotypes and gene regulation

    Get PDF
    We report genome sequences of 17 inbred strains of laboratory mice and identify almost ten times more variants than previously known. We use these genomes to explore the phylogenetic history of the laboratory mouse and to examine the functional consequences of allele-specific variation on transcript abundance, revealing that at least 12% of transcripts show a significant tissue-specific expression bias. By identifying candidate functional variants at 718 quantitative trait loci we show that the molecular nature of functional variants and their position relative to genes vary according to the effect size of the locus. These sequences provide a starting point for a new era in the functional analysis of a key model organism

    Cytidine deaminase protects pancreatic cancer cells from replicative stress and drives resistance to DNA-targeting drugs

    No full text
    Chronic DNA replication stress and genome instability are two hallmarks of cancer that fuel oncogenesis and tumor diversity. Therapeutic approaches aimed to leverage tumor-specific replication stress to intolerable levels or to expose vulnerabilities for synthetic lethality purposes have recently gained momentum, especially for pancreatic cancer, a disease with no cure. However, the current knowledge regarding the molecular mechanisms involved in the replication stress response in pancreatic tumors is limited. Cytidine deaminase (CDA) is involved in the pyrimidine salvage pathway for DNA and RNA synthesis. Loss of CDA induces genomic instability in Bloom Syndrome, and CDA protects tumor cells from chemotherapy with pyrimidine analogs. Here, we show that CDA is overexpressed in genetically unstable pancreatic tumors, associates with a DNA replication signature, and is instrumental for experimental tumor growth. In cancer cells, CDA promotes DNA replication, increases replication fork speed, and controls replication stress and genomic stability levels. CDA expression is predictive of DNA-damaging drug efficacy and targeting CDA relieves resistance to chemotherapy in patients models, both in vitro and in vivo . Our findings shed new light on the mechanisms by which pancreatic cancer cells control replication stress, and highlight targeting of CDA as a potential therapeutic strategy to defeat tumor resistance to treatment
    corecore